--- license: llama3.1 base_model: - meta-llama/Llama-3.1-405B-Instruct --- # Model Overview - **Model Architecture:** Llama-3.1 - **Input:** Text - **Output:** Text - **Supported Hardware Microarchitecture:** AMD MI350/MI355 - **ROCm**: 7.0 - **Preferred Operating System(s):** Linux - **Inference Engine:** [vLLM](https://docs.vllm.ai/en/latest/) - **Model Optimizer:** [AMD-Quark](https://quark.docs.amd.com/latest/index.html) (V0.9) - **Weight quantization:** OCP MXFP4, Static - **Activation quantization:** OCP MXFP4, Dynamic - **KV cache quantization:** OCP FP8, Static - **Calibration Dataset:** [Pile](https://huggingface.co/datasets/mit-han-lab/pile-val-backup) This model was built with Meta Llama by applying [AMD-Quark](https://quark.docs.amd.com/latest/index.html) for MXFP4 quantization. # Model Quantization The model was quantized from [meta-llama/Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct) using [AMD-Quark](https://quark.docs.amd.com/latest/index.html). Weights and activations were quantized to MXFP4, and KV caches were quantized to FP8. The AutoSmoothQuant algorithm was applied to enhance accuracy during quantization. **Quantization scripts:** ``` cd Quark/examples/torch/language_modeling/llm_ptq/ python3 quantize_quark.py --model_dir "meta-llama/Llama-3.1-405B-Instruct" \ --model_attn_implementation "sdpa" \ --quant_scheme w_mxfp4_a_mxfp4 \ --group_size 32 \ --kv_cache_dtype fp8 \ --quant_algo autosmoothquant \ --min_kv_scale 1.0 \ --model_export hf_format \ --output_dir amd/Llama-3.1-405B-Instruct-MXFP4 \ --multi_gpu ``` # Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. ## Evaluation The model was evaluated on MMLU, GSM8K_COT, ARC Challenge and IFEVAL. Evaluation was conducted using the framework [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the vLLM engine. ### Accuracy
| Benchmark | Llama-3.1-405B-Instruct | Llama-3.1-405B-Instruct-MXFP4(this model) | Recovery |
| MMLU (5-shot) | 87.63 | 86.68 | 98.92% |
| GSM8K_COT (8-shot, strict-match) | 96.51 | 96.13 | 99.61% |
| ARC Challenge (0-shot) | 96.65 | 96.39 | 99.73% |
| IFEVAL (0-shot, (inst_level_strict_acc+prompt_level_strict_acc)/2) | 88.52 | 87.00 | 98.28% |