anarlavrenov commited on
Commit
1e1bae2
·
verified ·
1 Parent(s): 830c0ea

Update README

Browse files
Files changed (1) hide show
  1. README.md +28 -25
README.md CHANGED
@@ -39,22 +39,22 @@ LIME-1B is a 1B-parameter, decoder-only Transformer language model trained from
39
 
40
  LIME-1B follows a modern GPT-style decoder-only Transformer with several quality-oriented design choices:
41
 
42
- | Component | Value |
43
- |-----------------------------|----------------------|
44
- | Architecture | Decoder-only Transformer |
45
- | Parameters | 1.0B |
46
- | Layers (decoder blocks) | 32 |
47
- | d_model | 1536 |
48
- | FFN dimension (d_ff) | 6144 |
49
- | Attention heads | 24 |
50
- | Vocabulary size | 50,000 |
51
- | Max sequence length | 512 tokens |
52
- | Positional encoding | Sinusoidal |
53
- | Norm | RMSNorm |
54
- | FFN | SiLU MLP |
55
- | Attention | FlashAttention |
56
- | Tying of embeddings | Output head tied to embedding |
57
- | Precision (training) | Mixed fp32/bf16 (autocast) + grad clipping |
58
 
59
 
60
  ## 2. Training data
@@ -121,24 +121,28 @@ After pretraining, the model is fine-tuned on a **unified instruction schema**:
121
 
122
  ## Usage
123
  ```python
 
 
 
124
  from transformers import AutoTokenizer, AutoModelForCausalLM
125
  import torch
126
 
127
- model_name = "anarlavrenov/LIME-1B"
128
- tokenizer = AutoTokenizer.from_pretrained(model_name)
129
  model = AutoModelForCausalLM.from_pretrained(
130
  model_name,
131
  torch_dtype=torch.bfloat16,
132
  device_map="auto",
 
133
  )
134
 
135
- def build_inference_prompt(context, question):
136
 
137
  context_ids = tokenizer.encode(context) if context else []
138
  question_ids = tokenizer.encode(question)
139
 
140
- uid = tokenizer.convert_tokens_to_ids("<assistant>")
141
- aid = tokenizer.convert_tokens_to_ids("<user>")
142
 
143
  ids = []
144
 
@@ -150,18 +154,17 @@ def build_inference_prompt(context, question):
150
 
151
  return torch.tensor(ids, dtype=torch.long)
152
 
153
- # Example usage
154
  context = "..." # optional context
155
  question = "Write five questions for a Data Scientist interview."
156
- prompt = build_prompt(context, question)
157
 
158
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
159
  outputs = model.generate(
160
  **inputs,
161
  max_new_tokens=256,
162
  do_sample=True,
163
- top_p=0.9,
164
- temperature=0.5,
165
  pad_token_id=tokenizer.pad_token_id,
166
  eos_token_id=tokenizer.eos_token_id,
167
  )
 
39
 
40
  LIME-1B follows a modern GPT-style decoder-only Transformer with several quality-oriented design choices:
41
 
42
+ | Component | Value |
43
+ |-------------------------|--------------------------------------------|
44
+ | Architecture | Decoder-only Transformer |
45
+ | Parameters | 1.0B |
46
+ | Layers (decoder blocks) | 32 |
47
+ | d_model | 1536 |
48
+ | FFN dimension (d_ff) | 6144 |
49
+ | Attention heads | 24 |
50
+ | Vocabulary size | 50,000 |
51
+ | Max sequence length | 512 tokens |
52
+ | Positional encoding | Sinusoidal |
53
+ | Norm | RMSNorm |
54
+ | FFN | SiLU MLP |
55
+ | Attention | FlashAttention |
56
+ | Tying of embeddings | Output head tied to embedding |
57
+ | Precision (training) | Mixed fp32/bf16 (autocast) + grad clipping |
58
 
59
 
60
  ## 2. Training data
 
121
 
122
  ## Usage
123
  ```python
124
+ # Example usage
125
+ # pip install -U ukraine
126
+
127
  from transformers import AutoTokenizer, AutoModelForCausalLM
128
  import torch
129
 
130
+ model_name = "anarlavrenov/LIME-1b"
131
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
132
  model = AutoModelForCausalLM.from_pretrained(
133
  model_name,
134
  torch_dtype=torch.bfloat16,
135
  device_map="auto",
136
+ trust_remote_code=True
137
  )
138
 
139
+ def build_prompt(context_, question_, tokenizer_):
140
 
141
  context_ids = tokenizer.encode(context) if context else []
142
  question_ids = tokenizer.encode(question)
143
 
144
+ uid = tokenizer.convert_tokens_to_ids("<user>")
145
+ aid = tokenizer.convert_tokens_to_ids("<assistant>")
146
 
147
  ids = []
148
 
 
154
 
155
  return torch.tensor(ids, dtype=torch.long)
156
 
 
157
  context = "..." # optional context
158
  question = "Write five questions for a Data Scientist interview."
159
+ prompt = build_prompt(context, question, tokenizer)
160
 
161
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
162
  outputs = model.generate(
163
  **inputs,
164
  max_new_tokens=256,
165
  do_sample=True,
166
+ top_p=None,
167
+ temperature=None,
168
  pad_token_id=tokenizer.pad_token_id,
169
  eos_token_id=tokenizer.eos_token_id,
170
  )