CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L6-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
['The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat.', 'A black phone case.'],
['It was a black umbrella with a loop.', 'A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline.'],
['A white sneaker with black, pink, and silver accents.', 'A blue backpack has an orange and white front with black straps.'],
['Oh, that sleek white TYESO tumbler with the silver top, I was just about to try it out for keeping my coffee warm all day.', 'It is a white, metal TYESO brand vacuum-insulated bottle/mug with a silver rim and a black lid with a clear straw.'],
['It is a bright orange backpack with a small pink strawberry charm.', 'The medium-sized black backpack, likely made of nylon or a similar synthetic material, features a white rectangular tag with "MUSIC IS POWER" printed on it and appears to be in good condition.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat.',
[
'A black phone case.',
'A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline.',
'A blue backpack has an orange and white front with black straps.',
'It is a white, metal TYESO brand vacuum-insulated bottle/mug with a silver rim and a black lid with a clear straw.',
'The medium-sized black backpack, likely made of nylon or a similar synthetic material, features a white rectangular tag with "MUSIC IS POWER" printed on it and appears to be in good condition.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Binary Classification
- Dataset:
eval - Evaluated with
CEBinaryClassificationEvaluator
| Metric | Value |
|---|---|
| accuracy | 0.8988 |
| accuracy_threshold | 0.1037 |
| f1 | 0.8318 |
| f1_threshold | -0.4537 |
| precision | 0.7978 |
| recall | 0.8688 |
| average_precision | 0.9072 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 114,138 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 15 characters
- mean: 106.73 characters
- max: 361 characters
- min: 14 characters
- mean: 110.94 characters
- max: 403 characters
- min: 0.0
- mean: 0.3
- max: 1.0
- Samples:
sentence_0 sentence_1 label The item is a promotional display featuring a variety of phone cases, including solid blue cases, cases with artistic designs, and one showcasing a kitten wearing a Santa hat.A black phone case.0.0It was a black umbrella with a loop.A new, mustard-yellow, waffle-knit long-sleeved henley shirt features a three-button placket, a chest pocket with a "Custom Supply" label, and an "L.O.G.G." tag at the neckline.0.0A white sneaker with black, pink, and silver accents.A blue backpack has an orange and white front with black straps.0.0 - Loss:
BinaryCrossEntropyLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | eval_average_precision |
|---|---|---|---|
| 0.0701 | 500 | 0.414 | 0.8339 |
| 0.1402 | 1000 | 0.3334 | 0.8344 |
| 0.2103 | 1500 | 0.2989 | 0.8549 |
| 0.2803 | 2000 | 0.2984 | 0.8596 |
| 0.3504 | 2500 | 0.2921 | 0.8707 |
| 0.4205 | 3000 | 0.2882 | 0.8734 |
| 0.4906 | 3500 | 0.2831 | 0.8802 |
| 0.5607 | 4000 | 0.2878 | 0.8828 |
| 0.6308 | 4500 | 0.2651 | 0.8857 |
| 0.7009 | 5000 | 0.2693 | 0.8854 |
| 0.7710 | 5500 | 0.2731 | 0.8876 |
| 0.8410 | 6000 | 0.2666 | 0.8905 |
| 0.9111 | 6500 | 0.2594 | 0.8925 |
| 0.9812 | 7000 | 0.2631 | 0.8956 |
| 1.0 | 7134 | - | 0.8921 |
| 1.0513 | 7500 | 0.2434 | 0.8955 |
| 1.1214 | 8000 | 0.2374 | 0.8969 |
| 1.1915 | 8500 | 0.2197 | 0.8962 |
| 1.2616 | 9000 | 0.2487 | 0.8980 |
| 1.3317 | 9500 | 0.2406 | 0.8990 |
| 1.4017 | 10000 | 0.2384 | 0.8995 |
| 1.4718 | 10500 | 0.2339 | 0.9021 |
| 1.5419 | 11000 | 0.2292 | 0.9034 |
| 1.6120 | 11500 | 0.2214 | 0.9046 |
| 1.6821 | 12000 | 0.2264 | 0.9049 |
| 1.7522 | 12500 | 0.2384 | 0.9058 |
| 1.8223 | 13000 | 0.2309 | 0.9072 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.1+cu128
- Accelerate: 1.11.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for andrewma5/harvard-loop-reranker
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Quantized
cross-encoder/ms-marco-MiniLM-L6-v2
Evaluation results
- Accuracy on evalself-reported0.899
- Accuracy Threshold on evalself-reported0.104
- F1 on evalself-reported0.832
- F1 Threshold on evalself-reported-0.454
- Precision on evalself-reported0.798
- Recall on evalself-reported0.869
- Average Precision on evalself-reported0.907