Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- meta.yaml +1 -1
- qwen_embeddings.mlmodelc/analytics/coremldata.bin +3 -0
- qwen_embeddings.mlmodelc/coremldata.bin +3 -0
- qwen_embeddings.mlmodelc/metadata.json +69 -0
- qwen_embeddings.mlmodelc/model.mil +11 -0
- qwen_embeddings.mlmodelc/weights/weight.bin +3 -0
- qwen_lm_head.mlmodelc/analytics/coremldata.bin +3 -0
- qwen_lm_head.mlmodelc/coremldata.bin +3 -0
- qwen_lm_head.mlmodelc/metadata.json +220 -0
- qwen_lm_head.mlmodelc/model.mil +186 -0
- qwen_lm_head.mlmodelc/weights/weight.bin +3 -0
.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
meta.yaml
CHANGED
|
@@ -14,7 +14,7 @@ model_info:
|
|
| 14 |
parameters:
|
| 15 |
context_length: 512
|
| 16 |
batch_size: 64
|
| 17 |
-
lut_embeddings:
|
| 18 |
lut_ffn: 6
|
| 19 |
lut_lmhead: 6
|
| 20 |
num_chunks: 1
|
|
|
|
| 14 |
parameters:
|
| 15 |
context_length: 512
|
| 16 |
batch_size: 64
|
| 17 |
+
lut_embeddings: None
|
| 18 |
lut_ffn: 6
|
| 19 |
lut_lmhead: 6
|
| 20 |
num_chunks: 1
|
qwen_embeddings.mlmodelc/analytics/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:310d49eb41b891c1cfc6a9a7dbe1d62e5a33e9136343e46852bb15d61754e43f
|
| 3 |
+
size 243
|
qwen_embeddings.mlmodelc/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:626e4ce3bf37e13a0b48524ccabe18155e9b7fed0c972dd10d4db61a5d0880c6
|
| 3 |
+
size 527
|
qwen_embeddings.mlmodelc/metadata.json
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"shortDescription" : "Anemll Model (Embeddings) converted to CoreML",
|
| 4 |
+
"metadataOutputVersion" : "3.0",
|
| 5 |
+
"outputSchema" : [
|
| 6 |
+
{
|
| 7 |
+
"hasShapeFlexibility" : "0",
|
| 8 |
+
"isOptional" : "0",
|
| 9 |
+
"dataType" : "Float16",
|
| 10 |
+
"formattedType" : "MultiArray (Float16)",
|
| 11 |
+
"shortDescription" : "",
|
| 12 |
+
"shape" : "[]",
|
| 13 |
+
"name" : "hidden_states",
|
| 14 |
+
"type" : "MultiArray"
|
| 15 |
+
}
|
| 16 |
+
],
|
| 17 |
+
"version" : "0.3.3",
|
| 18 |
+
"modelParameters" : [
|
| 19 |
+
|
| 20 |
+
],
|
| 21 |
+
"author" : "Converted with Anemll v0.3.3",
|
| 22 |
+
"specificationVersion" : 9,
|
| 23 |
+
"storagePrecision" : "Mixed (Float16, Palettized (21 bits), UInt6)",
|
| 24 |
+
"mlProgramOperationTypeHistogram" : {
|
| 25 |
+
"Ios18.constexprLutToDense" : 1,
|
| 26 |
+
"Ios18.gather" : 1
|
| 27 |
+
},
|
| 28 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
| 29 |
+
"stateSchema" : [
|
| 30 |
+
|
| 31 |
+
],
|
| 32 |
+
"isUpdatable" : "0",
|
| 33 |
+
"availability" : {
|
| 34 |
+
"macOS" : "15.0",
|
| 35 |
+
"tvOS" : "18.0",
|
| 36 |
+
"visionOS" : "2.0",
|
| 37 |
+
"watchOS" : "11.0",
|
| 38 |
+
"iOS" : "18.0",
|
| 39 |
+
"macCatalyst" : "18.0"
|
| 40 |
+
},
|
| 41 |
+
"modelType" : {
|
| 42 |
+
"name" : "MLModelType_mlProgram"
|
| 43 |
+
},
|
| 44 |
+
"inputSchema" : [
|
| 45 |
+
{
|
| 46 |
+
"shortDescription" : "",
|
| 47 |
+
"dataType" : "Int32",
|
| 48 |
+
"hasShapeFlexibility" : "1",
|
| 49 |
+
"isOptional" : "0",
|
| 50 |
+
"shapeFlexibility" : "1 × 1 | 1 × 64",
|
| 51 |
+
"formattedType" : "MultiArray (Int32 1 × 1)",
|
| 52 |
+
"type" : "MultiArray",
|
| 53 |
+
"shape" : "[1, 1]",
|
| 54 |
+
"name" : "input_ids",
|
| 55 |
+
"enumeratedShapes" : "[[1, 1], [1, 64]]"
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"userDefinedMetadata" : {
|
| 59 |
+
"com.anemll.context_length" : "512",
|
| 60 |
+
"com.github.apple.coremltools.version" : "8.3.0",
|
| 61 |
+
"com.anemll.lut_bits" : "6",
|
| 62 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
| 63 |
+
"com.anemll.info" : "Converted with Anemll v0.3.3",
|
| 64 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
| 65 |
+
},
|
| 66 |
+
"generatedClassName" : "qwen_embeddings",
|
| 67 |
+
"method" : "predict"
|
| 68 |
+
}
|
| 69 |
+
]
|
qwen_embeddings.mlmodelc/model.mil
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
program(1.3)
|
| 2 |
+
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3500.11.1"}, {"coremlc-version", "3500.21.1"}})]
|
| 3 |
+
{
|
| 4 |
+
func main<ios18>(tensor<int32, [1, ?]> input_ids) [FlexibleShapeInformation = tuple<tuple<string, dict<string, tensor<int32, [?]>>>, tuple<string, dict<string, dict<string, tensor<int32, [?]>>>>>((("DefaultShapes", {{"input_ids", [1, 1]}}), ("EnumeratedShapes", {{"79ae981e", {{"input_ids", [1, 1]}}}, {"ed9b58c8", {{"input_ids", [1, 64]}}}})))] {
|
| 5 |
+
int32 hidden_states_axis_0 = const()[name = string("hidden_states_axis_0"), val = int32(0)];
|
| 6 |
+
int32 hidden_states_batch_dims_0 = const()[name = string("hidden_states_batch_dims_0"), val = int32(0)];
|
| 7 |
+
bool hidden_states_validate_indices_0 = const()[name = string("hidden_states_validate_indices_0"), val = bool(false)];
|
| 8 |
+
tensor<fp16, [151936, 1024]> embed_tokens_weight_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [151936, 1024]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64))), lut = tensor<fp16, [18992, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(116686976))))[name = string("embed_tokens_weight_to_fp16_palettized")];
|
| 9 |
+
tensor<fp16, [1, ?, 1024]> hidden_states = gather(axis = hidden_states_axis_0, batch_dims = hidden_states_batch_dims_0, indices = input_ids, validate_indices = hidden_states_validate_indices_0, x = embed_tokens_weight_to_fp16_palettized)[name = string("hidden_states_cast_fp16")];
|
| 10 |
+
} -> (hidden_states);
|
| 11 |
+
}
|
qwen_embeddings.mlmodelc/weights/weight.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3aa93c5a92574caf627576b16b8bb7b7f5bacfdf5a5eb1951916bd64b3456ff3
|
| 3 |
+
size 119118016
|
qwen_lm_head.mlmodelc/analytics/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e05343a44f7fc2c4b9afbeeb300d09a6c1186c7be10912da68dfa83b14735c85
|
| 3 |
+
size 243
|
qwen_lm_head.mlmodelc/coremldata.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:097eaf8ad6e5423e442dae8722977a3f5aab61660be17053b7a32c53c95152fd
|
| 3 |
+
size 897
|
qwen_lm_head.mlmodelc/metadata.json
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"shortDescription" : "Anemll Model (LM Head) converted to CoreML",
|
| 4 |
+
"metadataOutputVersion" : "3.0",
|
| 5 |
+
"outputSchema" : [
|
| 6 |
+
{
|
| 7 |
+
"hasShapeFlexibility" : "0",
|
| 8 |
+
"isOptional" : "0",
|
| 9 |
+
"dataType" : "Float16",
|
| 10 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 11 |
+
"shortDescription" : "",
|
| 12 |
+
"shape" : "[1, 1, 9496]",
|
| 13 |
+
"name" : "logits1",
|
| 14 |
+
"type" : "MultiArray"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"hasShapeFlexibility" : "0",
|
| 18 |
+
"isOptional" : "0",
|
| 19 |
+
"dataType" : "Float16",
|
| 20 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 21 |
+
"shortDescription" : "",
|
| 22 |
+
"shape" : "[1, 1, 9496]",
|
| 23 |
+
"name" : "logits2",
|
| 24 |
+
"type" : "MultiArray"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"hasShapeFlexibility" : "0",
|
| 28 |
+
"isOptional" : "0",
|
| 29 |
+
"dataType" : "Float16",
|
| 30 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 31 |
+
"shortDescription" : "",
|
| 32 |
+
"shape" : "[1, 1, 9496]",
|
| 33 |
+
"name" : "logits3",
|
| 34 |
+
"type" : "MultiArray"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"hasShapeFlexibility" : "0",
|
| 38 |
+
"isOptional" : "0",
|
| 39 |
+
"dataType" : "Float16",
|
| 40 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 41 |
+
"shortDescription" : "",
|
| 42 |
+
"shape" : "[1, 1, 9496]",
|
| 43 |
+
"name" : "logits4",
|
| 44 |
+
"type" : "MultiArray"
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"hasShapeFlexibility" : "0",
|
| 48 |
+
"isOptional" : "0",
|
| 49 |
+
"dataType" : "Float16",
|
| 50 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 51 |
+
"shortDescription" : "",
|
| 52 |
+
"shape" : "[1, 1, 9496]",
|
| 53 |
+
"name" : "logits5",
|
| 54 |
+
"type" : "MultiArray"
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"hasShapeFlexibility" : "0",
|
| 58 |
+
"isOptional" : "0",
|
| 59 |
+
"dataType" : "Float16",
|
| 60 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 61 |
+
"shortDescription" : "",
|
| 62 |
+
"shape" : "[1, 1, 9496]",
|
| 63 |
+
"name" : "logits6",
|
| 64 |
+
"type" : "MultiArray"
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"hasShapeFlexibility" : "0",
|
| 68 |
+
"isOptional" : "0",
|
| 69 |
+
"dataType" : "Float16",
|
| 70 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 71 |
+
"shortDescription" : "",
|
| 72 |
+
"shape" : "[1, 1, 9496]",
|
| 73 |
+
"name" : "logits7",
|
| 74 |
+
"type" : "MultiArray"
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"hasShapeFlexibility" : "0",
|
| 78 |
+
"isOptional" : "0",
|
| 79 |
+
"dataType" : "Float16",
|
| 80 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 81 |
+
"shortDescription" : "",
|
| 82 |
+
"shape" : "[1, 1, 9496]",
|
| 83 |
+
"name" : "logits8",
|
| 84 |
+
"type" : "MultiArray"
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"hasShapeFlexibility" : "0",
|
| 88 |
+
"isOptional" : "0",
|
| 89 |
+
"dataType" : "Float16",
|
| 90 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 91 |
+
"shortDescription" : "",
|
| 92 |
+
"shape" : "[1, 1, 9496]",
|
| 93 |
+
"name" : "logits9",
|
| 94 |
+
"type" : "MultiArray"
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"hasShapeFlexibility" : "0",
|
| 98 |
+
"isOptional" : "0",
|
| 99 |
+
"dataType" : "Float16",
|
| 100 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 101 |
+
"shortDescription" : "",
|
| 102 |
+
"shape" : "[1, 1, 9496]",
|
| 103 |
+
"name" : "logits10",
|
| 104 |
+
"type" : "MultiArray"
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"hasShapeFlexibility" : "0",
|
| 108 |
+
"isOptional" : "0",
|
| 109 |
+
"dataType" : "Float16",
|
| 110 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 111 |
+
"shortDescription" : "",
|
| 112 |
+
"shape" : "[1, 1, 9496]",
|
| 113 |
+
"name" : "logits11",
|
| 114 |
+
"type" : "MultiArray"
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"hasShapeFlexibility" : "0",
|
| 118 |
+
"isOptional" : "0",
|
| 119 |
+
"dataType" : "Float16",
|
| 120 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 121 |
+
"shortDescription" : "",
|
| 122 |
+
"shape" : "[1, 1, 9496]",
|
| 123 |
+
"name" : "logits12",
|
| 124 |
+
"type" : "MultiArray"
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"hasShapeFlexibility" : "0",
|
| 128 |
+
"isOptional" : "0",
|
| 129 |
+
"dataType" : "Float16",
|
| 130 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 131 |
+
"shortDescription" : "",
|
| 132 |
+
"shape" : "[1, 1, 9496]",
|
| 133 |
+
"name" : "logits13",
|
| 134 |
+
"type" : "MultiArray"
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"hasShapeFlexibility" : "0",
|
| 138 |
+
"isOptional" : "0",
|
| 139 |
+
"dataType" : "Float16",
|
| 140 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 141 |
+
"shortDescription" : "",
|
| 142 |
+
"shape" : "[1, 1, 9496]",
|
| 143 |
+
"name" : "logits14",
|
| 144 |
+
"type" : "MultiArray"
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"hasShapeFlexibility" : "0",
|
| 148 |
+
"isOptional" : "0",
|
| 149 |
+
"dataType" : "Float16",
|
| 150 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 151 |
+
"shortDescription" : "",
|
| 152 |
+
"shape" : "[1, 1, 9496]",
|
| 153 |
+
"name" : "logits15",
|
| 154 |
+
"type" : "MultiArray"
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"hasShapeFlexibility" : "0",
|
| 158 |
+
"isOptional" : "0",
|
| 159 |
+
"dataType" : "Float16",
|
| 160 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 9496)",
|
| 161 |
+
"shortDescription" : "",
|
| 162 |
+
"shape" : "[1, 1, 9496]",
|
| 163 |
+
"name" : "logits16",
|
| 164 |
+
"type" : "MultiArray"
|
| 165 |
+
}
|
| 166 |
+
],
|
| 167 |
+
"version" : "0.3.3",
|
| 168 |
+
"modelParameters" : [
|
| 169 |
+
|
| 170 |
+
],
|
| 171 |
+
"author" : "Converted with Anemll v0.3.3",
|
| 172 |
+
"specificationVersion" : 9,
|
| 173 |
+
"storagePrecision" : "Mixed (Float16, Palettized (17 bits), UInt6)",
|
| 174 |
+
"mlProgramOperationTypeHistogram" : {
|
| 175 |
+
"Ios18.transpose" : 17,
|
| 176 |
+
"Ios18.constexprLutToDense" : 16,
|
| 177 |
+
"Ios18.expandDims" : 1,
|
| 178 |
+
"Ios18.conv" : 16,
|
| 179 |
+
"Ios18.squeeze" : 16
|
| 180 |
+
},
|
| 181 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
| 182 |
+
"stateSchema" : [
|
| 183 |
+
|
| 184 |
+
],
|
| 185 |
+
"isUpdatable" : "0",
|
| 186 |
+
"availability" : {
|
| 187 |
+
"macOS" : "15.0",
|
| 188 |
+
"tvOS" : "18.0",
|
| 189 |
+
"visionOS" : "2.0",
|
| 190 |
+
"watchOS" : "11.0",
|
| 191 |
+
"iOS" : "18.0",
|
| 192 |
+
"macCatalyst" : "18.0"
|
| 193 |
+
},
|
| 194 |
+
"modelType" : {
|
| 195 |
+
"name" : "MLModelType_mlProgram"
|
| 196 |
+
},
|
| 197 |
+
"inputSchema" : [
|
| 198 |
+
{
|
| 199 |
+
"hasShapeFlexibility" : "0",
|
| 200 |
+
"isOptional" : "0",
|
| 201 |
+
"dataType" : "Float16",
|
| 202 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1024)",
|
| 203 |
+
"shortDescription" : "",
|
| 204 |
+
"shape" : "[1, 1, 1024]",
|
| 205 |
+
"name" : "hidden_states",
|
| 206 |
+
"type" : "MultiArray"
|
| 207 |
+
}
|
| 208 |
+
],
|
| 209 |
+
"userDefinedMetadata" : {
|
| 210 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
| 211 |
+
"com.github.apple.coremltools.version" : "8.3.0",
|
| 212 |
+
"com.anemll.lut_bits" : "6",
|
| 213 |
+
"com.github.apple.coremltools.source" : "torch==2.5.0",
|
| 214 |
+
"com.anemll.info" : "Converted with Anemll v0.3.3",
|
| 215 |
+
"com.anemll.context_length" : "512"
|
| 216 |
+
},
|
| 217 |
+
"generatedClassName" : "qwen_lm_head_lut6",
|
| 218 |
+
"method" : "predict"
|
| 219 |
+
}
|
| 220 |
+
]
|
qwen_lm_head.mlmodelc/model.mil
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
program(1.3)
|
| 2 |
+
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3500.11.1"}, {"coremlc-version", "3500.21.1"}})]
|
| 3 |
+
{
|
| 4 |
+
func main<ios18>(tensor<fp16, [1, 1, 1024]> hidden_states) {
|
| 5 |
+
tensor<int32, [3]> var_5 = const()[name = string("op_5"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 6 |
+
tensor<int32, [1]> input_axes_0 = const()[name = string("input_axes_0"), val = tensor<int32, [1]>([2])];
|
| 7 |
+
tensor<fp16, [1, 1024, 1]> var_6_cast_fp16 = transpose(perm = var_5, x = hidden_states)[name = string("transpose_16")];
|
| 8 |
+
tensor<fp16, [1, 1024, 1, 1]> input_cast_fp16 = expand_dims(axes = input_axes_0, x = var_6_cast_fp16)[name = string("input_cast_fp16")];
|
| 9 |
+
string var_29_pad_type_0 = const()[name = string("op_29_pad_type_0"), val = string("valid")];
|
| 10 |
+
tensor<int32, [2]> var_29_strides_0 = const()[name = string("op_29_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 11 |
+
tensor<int32, [4]> var_29_pad_0 = const()[name = string("op_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 12 |
+
tensor<int32, [2]> var_29_dilations_0 = const()[name = string("op_29_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 13 |
+
int32 var_29_groups_0 = const()[name = string("op_29_groups_0"), val = int32(1)];
|
| 14 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_9_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(7293056))))[name = string("op_9_promoted_to_fp16_palettized")];
|
| 15 |
+
tensor<fp16, [1, 9496, 1, 1]> var_29_cast_fp16 = conv(dilations = var_29_dilations_0, groups = var_29_groups_0, pad = var_29_pad_0, pad_type = var_29_pad_type_0, strides = var_29_strides_0, weight = op_9_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_29_cast_fp16")];
|
| 16 |
+
tensor<int32, [1]> var_31_axes_0 = const()[name = string("op_31_axes_0"), val = tensor<int32, [1]>([2])];
|
| 17 |
+
tensor<fp16, [1, 9496, 1]> var_31_cast_fp16 = squeeze(axes = var_31_axes_0, x = var_29_cast_fp16)[name = string("op_31_cast_fp16")];
|
| 18 |
+
tensor<int32, [3]> var_34_perm_0 = const()[name = string("op_34_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 19 |
+
string var_55_pad_type_0 = const()[name = string("op_55_pad_type_0"), val = string("valid")];
|
| 20 |
+
tensor<int32, [2]> var_55_strides_0 = const()[name = string("op_55_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 21 |
+
tensor<int32, [4]> var_55_pad_0 = const()[name = string("op_55_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 22 |
+
tensor<int32, [2]> var_55_dilations_0 = const()[name = string("op_55_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 23 |
+
int32 var_55_groups_0 = const()[name = string("op_55_groups_0"), val = int32(1)];
|
| 24 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_35_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(7445056))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(14738048))))[name = string("op_35_promoted_to_fp16_palettized")];
|
| 25 |
+
tensor<fp16, [1, 9496, 1, 1]> var_55_cast_fp16 = conv(dilations = var_55_dilations_0, groups = var_55_groups_0, pad = var_55_pad_0, pad_type = var_55_pad_type_0, strides = var_55_strides_0, weight = op_35_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_55_cast_fp16")];
|
| 26 |
+
tensor<int32, [1]> var_57_axes_0 = const()[name = string("op_57_axes_0"), val = tensor<int32, [1]>([2])];
|
| 27 |
+
tensor<fp16, [1, 9496, 1]> var_57_cast_fp16 = squeeze(axes = var_57_axes_0, x = var_55_cast_fp16)[name = string("op_57_cast_fp16")];
|
| 28 |
+
tensor<int32, [3]> var_60_perm_0 = const()[name = string("op_60_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 29 |
+
string var_81_pad_type_0 = const()[name = string("op_81_pad_type_0"), val = string("valid")];
|
| 30 |
+
tensor<int32, [2]> var_81_strides_0 = const()[name = string("op_81_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 31 |
+
tensor<int32, [4]> var_81_pad_0 = const()[name = string("op_81_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 32 |
+
tensor<int32, [2]> var_81_dilations_0 = const()[name = string("op_81_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 33 |
+
int32 var_81_groups_0 = const()[name = string("op_81_groups_0"), val = int32(1)];
|
| 34 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_61_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(14890048))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22183040))))[name = string("op_61_promoted_to_fp16_palettized")];
|
| 35 |
+
tensor<fp16, [1, 9496, 1, 1]> var_81_cast_fp16 = conv(dilations = var_81_dilations_0, groups = var_81_groups_0, pad = var_81_pad_0, pad_type = var_81_pad_type_0, strides = var_81_strides_0, weight = op_61_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_81_cast_fp16")];
|
| 36 |
+
tensor<int32, [1]> var_83_axes_0 = const()[name = string("op_83_axes_0"), val = tensor<int32, [1]>([2])];
|
| 37 |
+
tensor<fp16, [1, 9496, 1]> var_83_cast_fp16 = squeeze(axes = var_83_axes_0, x = var_81_cast_fp16)[name = string("op_83_cast_fp16")];
|
| 38 |
+
tensor<int32, [3]> var_86_perm_0 = const()[name = string("op_86_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 39 |
+
string var_107_pad_type_0 = const()[name = string("op_107_pad_type_0"), val = string("valid")];
|
| 40 |
+
tensor<int32, [2]> var_107_strides_0 = const()[name = string("op_107_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 41 |
+
tensor<int32, [4]> var_107_pad_0 = const()[name = string("op_107_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 42 |
+
tensor<int32, [2]> var_107_dilations_0 = const()[name = string("op_107_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 43 |
+
int32 var_107_groups_0 = const()[name = string("op_107_groups_0"), val = int32(1)];
|
| 44 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_87_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22335040))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(29628032))))[name = string("op_87_promoted_to_fp16_palettized")];
|
| 45 |
+
tensor<fp16, [1, 9496, 1, 1]> var_107_cast_fp16 = conv(dilations = var_107_dilations_0, groups = var_107_groups_0, pad = var_107_pad_0, pad_type = var_107_pad_type_0, strides = var_107_strides_0, weight = op_87_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_107_cast_fp16")];
|
| 46 |
+
tensor<int32, [1]> var_109_axes_0 = const()[name = string("op_109_axes_0"), val = tensor<int32, [1]>([2])];
|
| 47 |
+
tensor<fp16, [1, 9496, 1]> var_109_cast_fp16 = squeeze(axes = var_109_axes_0, x = var_107_cast_fp16)[name = string("op_109_cast_fp16")];
|
| 48 |
+
tensor<int32, [3]> var_112_perm_0 = const()[name = string("op_112_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 49 |
+
string var_133_pad_type_0 = const()[name = string("op_133_pad_type_0"), val = string("valid")];
|
| 50 |
+
tensor<int32, [2]> var_133_strides_0 = const()[name = string("op_133_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 51 |
+
tensor<int32, [4]> var_133_pad_0 = const()[name = string("op_133_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 52 |
+
tensor<int32, [2]> var_133_dilations_0 = const()[name = string("op_133_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 53 |
+
int32 var_133_groups_0 = const()[name = string("op_133_groups_0"), val = int32(1)];
|
| 54 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_113_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(29780032))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(37073024))))[name = string("op_113_promoted_to_fp16_palettized")];
|
| 55 |
+
tensor<fp16, [1, 9496, 1, 1]> var_133_cast_fp16 = conv(dilations = var_133_dilations_0, groups = var_133_groups_0, pad = var_133_pad_0, pad_type = var_133_pad_type_0, strides = var_133_strides_0, weight = op_113_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_133_cast_fp16")];
|
| 56 |
+
tensor<int32, [1]> var_135_axes_0 = const()[name = string("op_135_axes_0"), val = tensor<int32, [1]>([2])];
|
| 57 |
+
tensor<fp16, [1, 9496, 1]> var_135_cast_fp16 = squeeze(axes = var_135_axes_0, x = var_133_cast_fp16)[name = string("op_135_cast_fp16")];
|
| 58 |
+
tensor<int32, [3]> var_138_perm_0 = const()[name = string("op_138_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 59 |
+
string var_159_pad_type_0 = const()[name = string("op_159_pad_type_0"), val = string("valid")];
|
| 60 |
+
tensor<int32, [2]> var_159_strides_0 = const()[name = string("op_159_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 61 |
+
tensor<int32, [4]> var_159_pad_0 = const()[name = string("op_159_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 62 |
+
tensor<int32, [2]> var_159_dilations_0 = const()[name = string("op_159_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 63 |
+
int32 var_159_groups_0 = const()[name = string("op_159_groups_0"), val = int32(1)];
|
| 64 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_139_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(37225024))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(44518016))))[name = string("op_139_promoted_to_fp16_palettized")];
|
| 65 |
+
tensor<fp16, [1, 9496, 1, 1]> var_159_cast_fp16 = conv(dilations = var_159_dilations_0, groups = var_159_groups_0, pad = var_159_pad_0, pad_type = var_159_pad_type_0, strides = var_159_strides_0, weight = op_139_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_159_cast_fp16")];
|
| 66 |
+
tensor<int32, [1]> var_161_axes_0 = const()[name = string("op_161_axes_0"), val = tensor<int32, [1]>([2])];
|
| 67 |
+
tensor<fp16, [1, 9496, 1]> var_161_cast_fp16 = squeeze(axes = var_161_axes_0, x = var_159_cast_fp16)[name = string("op_161_cast_fp16")];
|
| 68 |
+
tensor<int32, [3]> var_164_perm_0 = const()[name = string("op_164_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 69 |
+
string var_185_pad_type_0 = const()[name = string("op_185_pad_type_0"), val = string("valid")];
|
| 70 |
+
tensor<int32, [2]> var_185_strides_0 = const()[name = string("op_185_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 71 |
+
tensor<int32, [4]> var_185_pad_0 = const()[name = string("op_185_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 72 |
+
tensor<int32, [2]> var_185_dilations_0 = const()[name = string("op_185_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 73 |
+
int32 var_185_groups_0 = const()[name = string("op_185_groups_0"), val = int32(1)];
|
| 74 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_165_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(44670016))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(51963008))))[name = string("op_165_promoted_to_fp16_palettized")];
|
| 75 |
+
tensor<fp16, [1, 9496, 1, 1]> var_185_cast_fp16 = conv(dilations = var_185_dilations_0, groups = var_185_groups_0, pad = var_185_pad_0, pad_type = var_185_pad_type_0, strides = var_185_strides_0, weight = op_165_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_185_cast_fp16")];
|
| 76 |
+
tensor<int32, [1]> var_187_axes_0 = const()[name = string("op_187_axes_0"), val = tensor<int32, [1]>([2])];
|
| 77 |
+
tensor<fp16, [1, 9496, 1]> var_187_cast_fp16 = squeeze(axes = var_187_axes_0, x = var_185_cast_fp16)[name = string("op_187_cast_fp16")];
|
| 78 |
+
tensor<int32, [3]> var_190_perm_0 = const()[name = string("op_190_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 79 |
+
string var_211_pad_type_0 = const()[name = string("op_211_pad_type_0"), val = string("valid")];
|
| 80 |
+
tensor<int32, [2]> var_211_strides_0 = const()[name = string("op_211_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 81 |
+
tensor<int32, [4]> var_211_pad_0 = const()[name = string("op_211_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 82 |
+
tensor<int32, [2]> var_211_dilations_0 = const()[name = string("op_211_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 83 |
+
int32 var_211_groups_0 = const()[name = string("op_211_groups_0"), val = int32(1)];
|
| 84 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_191_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(52115008))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(59408000))))[name = string("op_191_promoted_to_fp16_palettized")];
|
| 85 |
+
tensor<fp16, [1, 9496, 1, 1]> var_211_cast_fp16 = conv(dilations = var_211_dilations_0, groups = var_211_groups_0, pad = var_211_pad_0, pad_type = var_211_pad_type_0, strides = var_211_strides_0, weight = op_191_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_211_cast_fp16")];
|
| 86 |
+
tensor<int32, [1]> var_213_axes_0 = const()[name = string("op_213_axes_0"), val = tensor<int32, [1]>([2])];
|
| 87 |
+
tensor<fp16, [1, 9496, 1]> var_213_cast_fp16 = squeeze(axes = var_213_axes_0, x = var_211_cast_fp16)[name = string("op_213_cast_fp16")];
|
| 88 |
+
tensor<int32, [3]> var_216_perm_0 = const()[name = string("op_216_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 89 |
+
string var_237_pad_type_0 = const()[name = string("op_237_pad_type_0"), val = string("valid")];
|
| 90 |
+
tensor<int32, [2]> var_237_strides_0 = const()[name = string("op_237_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 91 |
+
tensor<int32, [4]> var_237_pad_0 = const()[name = string("op_237_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 92 |
+
tensor<int32, [2]> var_237_dilations_0 = const()[name = string("op_237_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 93 |
+
int32 var_237_groups_0 = const()[name = string("op_237_groups_0"), val = int32(1)];
|
| 94 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_217_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(59560000))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(66852992))))[name = string("op_217_promoted_to_fp16_palettized")];
|
| 95 |
+
tensor<fp16, [1, 9496, 1, 1]> var_237_cast_fp16 = conv(dilations = var_237_dilations_0, groups = var_237_groups_0, pad = var_237_pad_0, pad_type = var_237_pad_type_0, strides = var_237_strides_0, weight = op_217_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_237_cast_fp16")];
|
| 96 |
+
tensor<int32, [1]> var_239_axes_0 = const()[name = string("op_239_axes_0"), val = tensor<int32, [1]>([2])];
|
| 97 |
+
tensor<fp16, [1, 9496, 1]> var_239_cast_fp16 = squeeze(axes = var_239_axes_0, x = var_237_cast_fp16)[name = string("op_239_cast_fp16")];
|
| 98 |
+
tensor<int32, [3]> var_242_perm_0 = const()[name = string("op_242_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 99 |
+
string var_263_pad_type_0 = const()[name = string("op_263_pad_type_0"), val = string("valid")];
|
| 100 |
+
tensor<int32, [2]> var_263_strides_0 = const()[name = string("op_263_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 101 |
+
tensor<int32, [4]> var_263_pad_0 = const()[name = string("op_263_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 102 |
+
tensor<int32, [2]> var_263_dilations_0 = const()[name = string("op_263_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 103 |
+
int32 var_263_groups_0 = const()[name = string("op_263_groups_0"), val = int32(1)];
|
| 104 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_243_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67004992))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(74297984))))[name = string("op_243_promoted_to_fp16_palettized")];
|
| 105 |
+
tensor<fp16, [1, 9496, 1, 1]> var_263_cast_fp16 = conv(dilations = var_263_dilations_0, groups = var_263_groups_0, pad = var_263_pad_0, pad_type = var_263_pad_type_0, strides = var_263_strides_0, weight = op_243_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_263_cast_fp16")];
|
| 106 |
+
tensor<int32, [1]> var_265_axes_0 = const()[name = string("op_265_axes_0"), val = tensor<int32, [1]>([2])];
|
| 107 |
+
tensor<fp16, [1, 9496, 1]> var_265_cast_fp16 = squeeze(axes = var_265_axes_0, x = var_263_cast_fp16)[name = string("op_265_cast_fp16")];
|
| 108 |
+
tensor<int32, [3]> var_268_perm_0 = const()[name = string("op_268_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 109 |
+
string var_289_pad_type_0 = const()[name = string("op_289_pad_type_0"), val = string("valid")];
|
| 110 |
+
tensor<int32, [2]> var_289_strides_0 = const()[name = string("op_289_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 111 |
+
tensor<int32, [4]> var_289_pad_0 = const()[name = string("op_289_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 112 |
+
tensor<int32, [2]> var_289_dilations_0 = const()[name = string("op_289_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 113 |
+
int32 var_289_groups_0 = const()[name = string("op_289_groups_0"), val = int32(1)];
|
| 114 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_269_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(74449984))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(81742976))))[name = string("op_269_promoted_to_fp16_palettized")];
|
| 115 |
+
tensor<fp16, [1, 9496, 1, 1]> var_289_cast_fp16 = conv(dilations = var_289_dilations_0, groups = var_289_groups_0, pad = var_289_pad_0, pad_type = var_289_pad_type_0, strides = var_289_strides_0, weight = op_269_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_289_cast_fp16")];
|
| 116 |
+
tensor<int32, [1]> var_291_axes_0 = const()[name = string("op_291_axes_0"), val = tensor<int32, [1]>([2])];
|
| 117 |
+
tensor<fp16, [1, 9496, 1]> var_291_cast_fp16 = squeeze(axes = var_291_axes_0, x = var_289_cast_fp16)[name = string("op_291_cast_fp16")];
|
| 118 |
+
tensor<int32, [3]> var_294_perm_0 = const()[name = string("op_294_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 119 |
+
string var_315_pad_type_0 = const()[name = string("op_315_pad_type_0"), val = string("valid")];
|
| 120 |
+
tensor<int32, [2]> var_315_strides_0 = const()[name = string("op_315_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 121 |
+
tensor<int32, [4]> var_315_pad_0 = const()[name = string("op_315_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 122 |
+
tensor<int32, [2]> var_315_dilations_0 = const()[name = string("op_315_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 123 |
+
int32 var_315_groups_0 = const()[name = string("op_315_groups_0"), val = int32(1)];
|
| 124 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_295_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(81894976))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(89187968))))[name = string("op_295_promoted_to_fp16_palettized")];
|
| 125 |
+
tensor<fp16, [1, 9496, 1, 1]> var_315_cast_fp16 = conv(dilations = var_315_dilations_0, groups = var_315_groups_0, pad = var_315_pad_0, pad_type = var_315_pad_type_0, strides = var_315_strides_0, weight = op_295_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_315_cast_fp16")];
|
| 126 |
+
tensor<int32, [1]> var_317_axes_0 = const()[name = string("op_317_axes_0"), val = tensor<int32, [1]>([2])];
|
| 127 |
+
tensor<fp16, [1, 9496, 1]> var_317_cast_fp16 = squeeze(axes = var_317_axes_0, x = var_315_cast_fp16)[name = string("op_317_cast_fp16")];
|
| 128 |
+
tensor<int32, [3]> var_320_perm_0 = const()[name = string("op_320_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 129 |
+
string var_341_pad_type_0 = const()[name = string("op_341_pad_type_0"), val = string("valid")];
|
| 130 |
+
tensor<int32, [2]> var_341_strides_0 = const()[name = string("op_341_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 131 |
+
tensor<int32, [4]> var_341_pad_0 = const()[name = string("op_341_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 132 |
+
tensor<int32, [2]> var_341_dilations_0 = const()[name = string("op_341_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 133 |
+
int32 var_341_groups_0 = const()[name = string("op_341_groups_0"), val = int32(1)];
|
| 134 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_321_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(89339968))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(96632960))))[name = string("op_321_promoted_to_fp16_palettized")];
|
| 135 |
+
tensor<fp16, [1, 9496, 1, 1]> var_341_cast_fp16 = conv(dilations = var_341_dilations_0, groups = var_341_groups_0, pad = var_341_pad_0, pad_type = var_341_pad_type_0, strides = var_341_strides_0, weight = op_321_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_341_cast_fp16")];
|
| 136 |
+
tensor<int32, [1]> var_343_axes_0 = const()[name = string("op_343_axes_0"), val = tensor<int32, [1]>([2])];
|
| 137 |
+
tensor<fp16, [1, 9496, 1]> var_343_cast_fp16 = squeeze(axes = var_343_axes_0, x = var_341_cast_fp16)[name = string("op_343_cast_fp16")];
|
| 138 |
+
tensor<int32, [3]> var_346_perm_0 = const()[name = string("op_346_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 139 |
+
string var_367_pad_type_0 = const()[name = string("op_367_pad_type_0"), val = string("valid")];
|
| 140 |
+
tensor<int32, [2]> var_367_strides_0 = const()[name = string("op_367_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 141 |
+
tensor<int32, [4]> var_367_pad_0 = const()[name = string("op_367_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 142 |
+
tensor<int32, [2]> var_367_dilations_0 = const()[name = string("op_367_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 143 |
+
int32 var_367_groups_0 = const()[name = string("op_367_groups_0"), val = int32(1)];
|
| 144 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_347_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(96784960))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(104077952))))[name = string("op_347_promoted_to_fp16_palettized")];
|
| 145 |
+
tensor<fp16, [1, 9496, 1, 1]> var_367_cast_fp16 = conv(dilations = var_367_dilations_0, groups = var_367_groups_0, pad = var_367_pad_0, pad_type = var_367_pad_type_0, strides = var_367_strides_0, weight = op_347_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_367_cast_fp16")];
|
| 146 |
+
tensor<int32, [1]> var_369_axes_0 = const()[name = string("op_369_axes_0"), val = tensor<int32, [1]>([2])];
|
| 147 |
+
tensor<fp16, [1, 9496, 1]> var_369_cast_fp16 = squeeze(axes = var_369_axes_0, x = var_367_cast_fp16)[name = string("op_369_cast_fp16")];
|
| 148 |
+
tensor<int32, [3]> var_372_perm_0 = const()[name = string("op_372_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 149 |
+
string var_393_pad_type_0 = const()[name = string("op_393_pad_type_0"), val = string("valid")];
|
| 150 |
+
tensor<int32, [2]> var_393_strides_0 = const()[name = string("op_393_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 151 |
+
tensor<int32, [4]> var_393_pad_0 = const()[name = string("op_393_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 152 |
+
tensor<int32, [2]> var_393_dilations_0 = const()[name = string("op_393_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 153 |
+
int32 var_393_groups_0 = const()[name = string("op_393_groups_0"), val = int32(1)];
|
| 154 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_373_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(104229952))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(111522944))))[name = string("op_373_promoted_to_fp16_palettized")];
|
| 155 |
+
tensor<fp16, [1, 9496, 1, 1]> var_393_cast_fp16 = conv(dilations = var_393_dilations_0, groups = var_393_groups_0, pad = var_393_pad_0, pad_type = var_393_pad_type_0, strides = var_393_strides_0, weight = op_373_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_393_cast_fp16")];
|
| 156 |
+
tensor<int32, [1]> var_395_axes_0 = const()[name = string("op_395_axes_0"), val = tensor<int32, [1]>([2])];
|
| 157 |
+
tensor<fp16, [1, 9496, 1]> var_395_cast_fp16 = squeeze(axes = var_395_axes_0, x = var_393_cast_fp16)[name = string("op_395_cast_fp16")];
|
| 158 |
+
tensor<int32, [3]> var_398_perm_0 = const()[name = string("op_398_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 159 |
+
string var_419_pad_type_0 = const()[name = string("op_419_pad_type_0"), val = string("valid")];
|
| 160 |
+
tensor<int32, [2]> var_419_strides_0 = const()[name = string("op_419_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
| 161 |
+
tensor<int32, [4]> var_419_pad_0 = const()[name = string("op_419_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
| 162 |
+
tensor<int32, [2]> var_419_dilations_0 = const()[name = string("op_419_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
| 163 |
+
int32 var_419_groups_0 = const()[name = string("op_419_groups_0"), val = int32(1)];
|
| 164 |
+
tensor<fp16, [9496, 1024, 1, 1]> op_399_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor<uint6, [9496, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(111674944))), lut = tensor<fp16, [1187, 1, 1, 1, 64, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(118967936))))[name = string("op_399_promoted_to_fp16_palettized")];
|
| 165 |
+
tensor<fp16, [1, 9496, 1, 1]> var_419_cast_fp16 = conv(dilations = var_419_dilations_0, groups = var_419_groups_0, pad = var_419_pad_0, pad_type = var_419_pad_type_0, strides = var_419_strides_0, weight = op_399_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("op_419_cast_fp16")];
|
| 166 |
+
tensor<int32, [1]> var_421_axes_0 = const()[name = string("op_421_axes_0"), val = tensor<int32, [1]>([2])];
|
| 167 |
+
tensor<fp16, [1, 9496, 1]> var_421_cast_fp16 = squeeze(axes = var_421_axes_0, x = var_419_cast_fp16)[name = string("op_421_cast_fp16")];
|
| 168 |
+
tensor<int32, [3]> var_424_perm_0 = const()[name = string("op_424_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
| 169 |
+
tensor<fp16, [1, 1, 9496]> logits1 = transpose(perm = var_34_perm_0, x = var_31_cast_fp16)[name = string("transpose_0")];
|
| 170 |
+
tensor<fp16, [1, 1, 9496]> logits2 = transpose(perm = var_60_perm_0, x = var_57_cast_fp16)[name = string("transpose_1")];
|
| 171 |
+
tensor<fp16, [1, 1, 9496]> logits3 = transpose(perm = var_86_perm_0, x = var_83_cast_fp16)[name = string("transpose_2")];
|
| 172 |
+
tensor<fp16, [1, 1, 9496]> logits4 = transpose(perm = var_112_perm_0, x = var_109_cast_fp16)[name = string("transpose_3")];
|
| 173 |
+
tensor<fp16, [1, 1, 9496]> logits5 = transpose(perm = var_138_perm_0, x = var_135_cast_fp16)[name = string("transpose_4")];
|
| 174 |
+
tensor<fp16, [1, 1, 9496]> logits6 = transpose(perm = var_164_perm_0, x = var_161_cast_fp16)[name = string("transpose_5")];
|
| 175 |
+
tensor<fp16, [1, 1, 9496]> logits7 = transpose(perm = var_190_perm_0, x = var_187_cast_fp16)[name = string("transpose_6")];
|
| 176 |
+
tensor<fp16, [1, 1, 9496]> logits8 = transpose(perm = var_216_perm_0, x = var_213_cast_fp16)[name = string("transpose_7")];
|
| 177 |
+
tensor<fp16, [1, 1, 9496]> logits9 = transpose(perm = var_242_perm_0, x = var_239_cast_fp16)[name = string("transpose_8")];
|
| 178 |
+
tensor<fp16, [1, 1, 9496]> logits10 = transpose(perm = var_268_perm_0, x = var_265_cast_fp16)[name = string("transpose_9")];
|
| 179 |
+
tensor<fp16, [1, 1, 9496]> logits11 = transpose(perm = var_294_perm_0, x = var_291_cast_fp16)[name = string("transpose_10")];
|
| 180 |
+
tensor<fp16, [1, 1, 9496]> logits12 = transpose(perm = var_320_perm_0, x = var_317_cast_fp16)[name = string("transpose_11")];
|
| 181 |
+
tensor<fp16, [1, 1, 9496]> logits13 = transpose(perm = var_346_perm_0, x = var_343_cast_fp16)[name = string("transpose_12")];
|
| 182 |
+
tensor<fp16, [1, 1, 9496]> logits14 = transpose(perm = var_372_perm_0, x = var_369_cast_fp16)[name = string("transpose_13")];
|
| 183 |
+
tensor<fp16, [1, 1, 9496]> logits15 = transpose(perm = var_398_perm_0, x = var_395_cast_fp16)[name = string("transpose_14")];
|
| 184 |
+
tensor<fp16, [1, 1, 9496]> logits16 = transpose(perm = var_424_perm_0, x = var_421_cast_fp16)[name = string("transpose_15")];
|
| 185 |
+
} -> (logits1, logits2, logits3, logits4, logits5, logits6, logits7, logits8, logits9, logits10, logits11, logits12, logits13, logits14, logits15, logits16);
|
| 186 |
+
}
|
qwen_lm_head.mlmodelc/weights/weight.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8707b04445d6c46e5b15b263bb51e7329841877d4517808b26760117d42b22ac
|
| 3 |
+
size 119119936
|