anipani commited on
Commit
a62b6ed
·
verified ·
1 Parent(s): d619fba

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6701
22
+ - Answer: {'precision': 0.6956043956043956, 'recall': 0.7824474660074165, 'f1': 0.7364746945898778, 'number': 809}
23
+ - Header: {'precision': 0.2846715328467153, 'recall': 0.3277310924369748, 'f1': 0.3046875, 'number': 119}
24
+ - Question: {'precision': 0.7870289219982471, 'recall': 0.8431924882629108, 'f1': 0.8141432456935629, 'number': 1065}
25
+ - Overall Precision: 0.7176
26
+ - Overall Recall: 0.7878
27
+ - Overall F1: 0.7510
28
+ - Overall Accuracy: 0.8157
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.8085 | 1.0 | 10 | 1.6056 | {'precision': 0.033630069238377844, 'recall': 0.042027194066749075, 'f1': 0.03736263736263736, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2052679382379655, 'recall': 0.21220657276995306, 'f1': 0.20867959372114497, 'number': 1065} | 0.1231 | 0.1305 | 0.1267 | 0.3778 |
61
+ | 1.4421 | 2.0 | 20 | 1.2735 | {'precision': 0.16164383561643836, 'recall': 0.14585908529048208, 'f1': 0.1533463287849253, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4393530997304582, 'recall': 0.4591549295774648, 'f1': 0.4490358126721763, 'number': 1065} | 0.3294 | 0.3046 | 0.3165 | 0.5551 |
62
+ | 1.0974 | 3.0 | 30 | 0.9812 | {'precision': 0.4577114427860697, 'recall': 0.45488257107540175, 'f1': 0.45629262244265345, 'number': 809} | {'precision': 0.03571428571428571, 'recall': 0.008403361344537815, 'f1': 0.013605442176870748, 'number': 119} | {'precision': 0.5671521035598706, 'recall': 0.6582159624413145, 'f1': 0.6093003042155585, 'number': 1065} | 0.5174 | 0.5369 | 0.5270 | 0.7087 |
63
+ | 0.8437 | 4.0 | 40 | 0.8026 | {'precision': 0.6002214839424141, 'recall': 0.6699629171817059, 'f1': 0.6331775700934579, 'number': 809} | {'precision': 0.2698412698412698, 'recall': 0.14285714285714285, 'f1': 0.18681318681318682, 'number': 119} | {'precision': 0.6771378708551483, 'recall': 0.7286384976525822, 'f1': 0.7019448213478063, 'number': 1065} | 0.6321 | 0.6698 | 0.6504 | 0.7593 |
64
+ | 0.6743 | 5.0 | 50 | 0.7231 | {'precision': 0.6385281385281385, 'recall': 0.7292954264524104, 'f1': 0.6809001731102134, 'number': 809} | {'precision': 0.28735632183908044, 'recall': 0.21008403361344538, 'f1': 0.24271844660194175, 'number': 119} | {'precision': 0.6861022364217252, 'recall': 0.8065727699530516, 'f1': 0.7414760466119981, 'number': 1065} | 0.6513 | 0.7396 | 0.6927 | 0.7851 |
65
+ | 0.5721 | 6.0 | 60 | 0.6909 | {'precision': 0.6521739130434783, 'recall': 0.7787391841779975, 'f1': 0.7098591549295774, 'number': 809} | {'precision': 0.25287356321839083, 'recall': 0.18487394957983194, 'f1': 0.21359223300970878, 'number': 119} | {'precision': 0.7174657534246576, 'recall': 0.7868544600938967, 'f1': 0.7505597850425437, 'number': 1065} | 0.6709 | 0.7476 | 0.7072 | 0.7896 |
66
+ | 0.4865 | 7.0 | 70 | 0.6542 | {'precision': 0.6832432432432433, 'recall': 0.7812113720642769, 'f1': 0.7289504036908883, 'number': 809} | {'precision': 0.2975206611570248, 'recall': 0.3025210084033613, 'f1': 0.3, 'number': 119} | {'precision': 0.7537379067722075, 'recall': 0.8046948356807512, 'f1': 0.7783832879200727, 'number': 1065} | 0.6986 | 0.7652 | 0.7304 | 0.8039 |
67
+ | 0.4318 | 8.0 | 80 | 0.6547 | {'precision': 0.6796536796536796, 'recall': 0.7762669962917181, 'f1': 0.7247547605308712, 'number': 809} | {'precision': 0.26515151515151514, 'recall': 0.29411764705882354, 'f1': 0.2788844621513944, 'number': 119} | {'precision': 0.764402407566638, 'recall': 0.8347417840375587, 'f1': 0.7980251346499103, 'number': 1065} | 0.6994 | 0.7787 | 0.7369 | 0.8061 |
68
+ | 0.3734 | 9.0 | 90 | 0.6533 | {'precision': 0.6978260869565217, 'recall': 0.7935723114956736, 'f1': 0.742625795257374, 'number': 809} | {'precision': 0.2971014492753623, 'recall': 0.3445378151260504, 'f1': 0.31906614785992216, 'number': 119} | {'precision': 0.7701543739279588, 'recall': 0.8431924882629108, 'f1': 0.8050201703272075, 'number': 1065} | 0.7109 | 0.7933 | 0.7498 | 0.8063 |
69
+ | 0.3735 | 10.0 | 100 | 0.6473 | {'precision': 0.7034178610804851, 'recall': 0.788627935723115, 'f1': 0.7435897435897435, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.7897526501766784, 'recall': 0.8394366197183099, 'f1': 0.8138370505234409, 'number': 1065} | 0.7279 | 0.7878 | 0.7566 | 0.8158 |
70
+ | 0.3068 | 11.0 | 110 | 0.6692 | {'precision': 0.6868250539956804, 'recall': 0.7861557478368356, 'f1': 0.7331412103746396, 'number': 809} | {'precision': 0.2866666666666667, 'recall': 0.36134453781512604, 'f1': 0.3197026022304833, 'number': 119} | {'precision': 0.7710843373493976, 'recall': 0.8413145539906103, 'f1': 0.8046699595868883, 'number': 1065} | 0.7038 | 0.7903 | 0.7445 | 0.8045 |
71
+ | 0.2884 | 12.0 | 120 | 0.6608 | {'precision': 0.7064116985376828, 'recall': 0.7762669962917181, 'f1': 0.7396937573616018, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.33613445378151263, 'f1': 0.321285140562249, 'number': 119} | {'precision': 0.7878521126760564, 'recall': 0.8403755868544601, 'f1': 0.8132666969559291, 'number': 1065} | 0.7253 | 0.7842 | 0.7536 | 0.8147 |
72
+ | 0.273 | 13.0 | 130 | 0.6682 | {'precision': 0.6948408342480791, 'recall': 0.7824474660074165, 'f1': 0.7360465116279069, 'number': 809} | {'precision': 0.29927007299270075, 'recall': 0.3445378151260504, 'f1': 0.3203125, 'number': 119} | {'precision': 0.7893805309734513, 'recall': 0.8375586854460094, 'f1': 0.812756264236902, 'number': 1065} | 0.7190 | 0.7858 | 0.7509 | 0.8152 |
73
+ | 0.2539 | 14.0 | 140 | 0.6689 | {'precision': 0.6976744186046512, 'recall': 0.7787391841779975, 'f1': 0.7359813084112149, 'number': 809} | {'precision': 0.2826086956521739, 'recall': 0.3277310924369748, 'f1': 0.3035019455252918, 'number': 119} | {'precision': 0.787215411558669, 'recall': 0.844131455399061, 'f1': 0.8146805618486633, 'number': 1065} | 0.7183 | 0.7868 | 0.7510 | 0.8158 |
74
+ | 0.2552 | 15.0 | 150 | 0.6701 | {'precision': 0.6956043956043956, 'recall': 0.7824474660074165, 'f1': 0.7364746945898778, 'number': 809} | {'precision': 0.2846715328467153, 'recall': 0.3277310924369748, 'f1': 0.3046875, 'number': 119} | {'precision': 0.7870289219982471, 'recall': 0.8431924882629108, 'f1': 0.8141432456935629, 'number': 1065} | 0.7176 | 0.7878 | 0.7510 | 0.8157 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.50.0.dev0
80
+ - Pytorch 2.5.1+cu124
81
+ - Datasets 3.3.2
82
+ - Tokenizers 0.21.0
logs/events.out.tfevents.1740758626.5b8bb2c2cd39.432.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d76669879814dea76fc71e2d1e4f32fd24de2619e406204e29c17edd636b5cc
3
- size 15199
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd44edecb2a944d86ab69c7aecbd8a8e42184ff31c036905e5bf81acc08511a
3
+ size 16268
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cf18fbf7bf7b497e95660798b97aff174bda1b791f3906a093fefdffe2e889cf
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca3c737ed8cde6de9154ea4ab41a7eddeada89b4f31e2c044f25fe74b72cf59
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff