Improve model card: Add pipeline tag, library name, paper, code, and usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,7 +1,89 @@
|
|
| 1 |
---
|
| 2 |
-
license: gpl-3.0
|
| 3 |
datasets:
|
| 4 |
- alespalla/chatbot_instruction_prompts
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
datasets:
|
| 3 |
- alespalla/chatbot_instruction_prompts
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
+
license: gpl-3.0
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
library_name: transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Olifant: Memory-based language modeling
|
| 12 |
+
|
| 13 |
+
This repository contains the **Olifant** model, an implementation of memory-based language modeling, presented in the paper [Memory-based Language Models: An Efficient, Explainable, and Eco-friendly Approach to Large Language Modeling](https://huggingface.co/papers/2510.22317).
|
| 14 |
+
|
| 15 |
+
Olifant models offer several unique properties and benefits:
|
| 16 |
+
* **Scalable Learning**: Learning is scalable and incremental. Model performance increases approximately log-linearly with more data; model size, learning time, and RAM usage co-scale linearly with more data.
|
| 17 |
+
* **Low CO2 Emissions**: Consistently low CO2 emissions during training and inference. *Olifant* runs on CPUs, with estimated CO2 emissions significantly lower than neural LM training (1,000 times fewer) and inference (10-100 times lower).
|
| 18 |
+
* **Transparent Functioning**: Fully transparent functioning. *Olifant* offers nearest-neighbor-based explanations for predictions, based on individual examples, allowing for full provenance.
|
| 19 |
+
* **Intentional Memorization**: Depending on context size settings, *Olifant* models can recite the majority of tokens from their training data faithfully.
|
| 20 |
+
|
| 21 |
+
For more details, installation instructions, and further usage examples, please refer to the [official GitHub repository](https://github.com/antalvdb/olifant).
|
| 22 |
+
|
| 23 |
+
## Usage (Hugging Face style)
|
| 24 |
+
|
| 25 |
+
You can use the `TimblHuggingFaceModel` with the Hugging Face `transformers` library for GPT-style text completion. This requires the `olifant` library to be installed (e.g., `pip install olifant`).
|
| 26 |
+
|
| 27 |
+
**Note:** For actual inference, you will need a trained `.ibase` classifier file. The `CLASSIFIER_PATH` in the example below should point to your `.ibase` file. You can generate this file by following the training instructions in the [Olifant GitHub repository](https://github.com/antalvdb/olifant#training).
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import AutoTokenizer, AutoConfig
|
| 32 |
+
from olifant.model.hf_wrapper import TimblHuggingFaceModel
|
| 33 |
+
from olifant.classifier import timbl
|
| 34 |
+
|
| 35 |
+
# Define paths and arguments
|
| 36 |
+
# IMPORTANT: Replace "path/to/your/textfile_tok.l4r0.ibase" with the actual path to your .ibase file.
|
| 37 |
+
CLASSIFIER_PATH = "path/to/your/textfile_tok.l4r0.ibase"
|
| 38 |
+
TOKENIZER_NAME = "gpt2" # The tokenizer used during training (e.g., 'gpt2' as per olifant-tok)
|
| 39 |
+
TIMBL_ARGS = "-a4" # For TRIBL2 k-NN approximation (as recommended for inference)
|
| 40 |
+
|
| 41 |
+
# Initialize the tokenizer
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
|
| 43 |
+
tokenizer.add_special_tokens({'pad_token': '_'})
|
| 44 |
+
tokenizer.pad_token = "_" # Ensure pad token is set
|
| 45 |
+
|
| 46 |
+
# Initialize the Timbl classifier
|
| 47 |
+
classifier_core = timbl.TimblClassifier(CLASSIFIER_PATH, TIMBL_ARGS)
|
| 48 |
+
classifier_core.load()
|
| 49 |
+
|
| 50 |
+
# Load the model configuration from the Hugging Face Hub
|
| 51 |
+
config = AutoConfig.from_pretrained("antalvdb/mblm-chatbot-instruction-prompts-igtree")
|
| 52 |
+
|
| 53 |
+
# Initialize the TimblHuggingFaceModel
|
| 54 |
+
model = TimblHuggingFaceModel(config, classifier_core, tokenizer)
|
| 55 |
+
|
| 56 |
+
# Example text generation
|
| 57 |
+
input_text = "The quick brown fox jumps over the lazy"
|
| 58 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 59 |
+
|
| 60 |
+
# Perform text generation
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
output_ids = model.generate(
|
| 63 |
+
input_ids,
|
| 64 |
+
max_new_tokens=10,
|
| 65 |
+
num_beams=1,
|
| 66 |
+
do_sample=False, # Use greedy decoding for simplicity
|
| 67 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 68 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 72 |
+
print(f"Input: {input_text}")
|
| 73 |
+
print(f"Generated: {generated_text}")
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## Citation
|
| 77 |
+
If you find this work helpful, please consider citing the paper:
|
| 78 |
+
|
| 79 |
+
```bibtex
|
| 80 |
+
@article{van_den_bosch_risco_paton_buijse_berck_van_gompel_2025,
|
| 81 |
+
title={Memory-based language models: An efficient, explainable, and eco-friendly approach to large language modeling},
|
| 82 |
+
author={Van den Bosch, Antal and Risco Patón, Ainhoa and Buijse, Teun and Berck, Peter and Van Gompel, Maarten},
|
| 83 |
+
year={2025},
|
| 84 |
+
eprint={2510.22317},
|
| 85 |
+
archivePrefix={arXiv},
|
| 86 |
+
primaryClass={cs.CL},
|
| 87 |
+
url={https://arxiv.org/abs/2510.22317},
|
| 88 |
+
}
|
| 89 |
+
```
|