--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: FPC_model results: [] --- # FPC_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4029 - Accuracy: 0.9153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 285 | 1.1683 | 0.7397 | | 1.5827 | 2.0 | 570 | 0.6301 | 0.8481 | | 1.5827 | 3.0 | 855 | 0.5046 | 0.8755 | | 0.4453 | 4.0 | 1140 | 0.4156 | 0.8941 | | 0.4453 | 5.0 | 1425 | 0.3790 | 0.9153 | | 0.1964 | 6.0 | 1710 | 0.3949 | 0.9078 | | 0.1964 | 7.0 | 1995 | 0.3969 | 0.9153 | | 0.1072 | 8.0 | 2280 | 0.4002 | 0.9153 | | 0.0611 | 9.0 | 2565 | 0.4027 | 0.9141 | | 0.0611 | 10.0 | 2850 | 0.4029 | 0.9153 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3