program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})] { func main(tensor c_in, tensor h_in, tensor target_length, tensor targets) { tensor y_batch_dims_0 = const()[name = tensor("y_batch_dims_0"), val = tensor(0)]; tensor y_validate_indices_0 = const()[name = tensor("y_validate_indices_0"), val = tensor(false)]; tensor module_prediction_embed_weight_to_fp16 = const()[name = tensor("module_prediction_embed_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor targets_to_int16_dtype_0 = const()[name = tensor("targets_to_int16_dtype_0"), val = tensor("int16")]; tensor cast_1_dtype_0 = const()[name = tensor("cast_1_dtype_0"), val = tensor("int32")]; tensor greater_equal_0_y_0 = const()[name = tensor("greater_equal_0_y_0"), val = tensor(0)]; tensor targets_to_int16 = cast(dtype = targets_to_int16_dtype_0, x = targets)[name = tensor("cast_9")]; tensor cast_1 = cast(dtype = cast_1_dtype_0, x = targets_to_int16)[name = tensor("cast_8")]; tensor greater_equal_0 = greater_equal(x = cast_1, y = greater_equal_0_y_0)[name = tensor("greater_equal_0")]; tensor slice_by_index_0 = const()[name = tensor("slice_by_index_0"), val = tensor(1025)]; tensor add_2 = add(x = cast_1, y = slice_by_index_0)[name = tensor("add_2")]; tensor select_0 = select(a = cast_1, b = add_2, cond = greater_equal_0)[name = tensor("select_0")]; tensor y_cast_fp16_cast_uint16_axis_0 = const()[name = tensor("y_cast_fp16_cast_uint16_axis_0"), val = tensor(0)]; tensor select_0_to_int16_dtype_0 = const()[name = tensor("select_0_to_int16_dtype_0"), val = tensor("int16")]; tensor select_0_to_int16 = cast(dtype = select_0_to_int16_dtype_0, x = select_0)[name = tensor("cast_7")]; tensor y_cast_fp16_cast_uint16_cast_uint16 = gather(axis = y_cast_fp16_cast_uint16_axis_0, batch_dims = y_batch_dims_0, indices = select_0_to_int16, validate_indices = y_validate_indices_0, x = module_prediction_embed_weight_to_fp16)[name = tensor("y_cast_fp16_cast_uint16_cast_uint16")]; tensor input_3_perm_0 = const()[name = tensor("input_3_perm_0"), val = tensor([1, 0, 2])]; tensor split_0_num_splits_0 = const()[name = tensor("split_0_num_splits_0"), val = tensor(2)]; tensor split_0_axis_0 = const()[name = tensor("split_0_axis_0"), val = tensor(0)]; tensor h_in_to_fp16_dtype_0 = const()[name = tensor("h_in_to_fp16_dtype_0"), val = tensor("fp16")]; tensor h_in_to_fp16 = cast(dtype = h_in_to_fp16_dtype_0, x = h_in)[name = tensor("cast_6")]; tensor split_0_cast_fp16_0, tensor split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = h_in_to_fp16)[name = tensor("split_0_cast_fp16")]; tensor split_1_num_splits_0 = const()[name = tensor("split_1_num_splits_0"), val = tensor(2)]; tensor split_1_axis_0 = const()[name = tensor("split_1_axis_0"), val = tensor(0)]; tensor c_in_to_fp16_dtype_0 = const()[name = tensor("c_in_to_fp16_dtype_0"), val = tensor("fp16")]; tensor c_in_to_fp16 = cast(dtype = c_in_to_fp16_dtype_0, x = c_in)[name = tensor("cast_5")]; tensor split_1_cast_fp16_0, tensor split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = c_in_to_fp16)[name = tensor("split_1_cast_fp16")]; tensor input_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor("input_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor([0])]; tensor input_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor("input_lstm_layer_0_lstm_h0_squeeze_cast_fp16")]; tensor input_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor("input_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor([0])]; tensor input_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor("input_lstm_layer_0_lstm_c0_squeeze_cast_fp16")]; tensor input_lstm_layer_0_direction_0 = const()[name = tensor("input_lstm_layer_0_direction_0"), val = tensor("forward")]; tensor input_lstm_layer_0_output_sequence_0 = const()[name = tensor("input_lstm_layer_0_output_sequence_0"), val = tensor(true)]; tensor input_lstm_layer_0_recurrent_activation_0 = const()[name = tensor("input_lstm_layer_0_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_lstm_layer_0_cell_activation_0 = const()[name = tensor("input_lstm_layer_0_cell_activation_0"), val = tensor("tanh")]; tensor input_lstm_layer_0_activation_0 = const()[name = tensor("input_lstm_layer_0_activation_0"), val = tensor("tanh")]; tensor concat_1_to_fp16 = const()[name = tensor("concat_1_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1312128)))]; tensor concat_2_to_fp16 = const()[name = tensor("concat_2_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4588992)))]; tensor concat_0_to_fp16 = const()[name = tensor("concat_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7865856)))]; tensor input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = y_cast_fp16_cast_uint16_cast_uint16)[name = tensor("transpose_2")]; tensor input_lstm_layer_0_cast_fp16_0, tensor input_lstm_layer_0_cast_fp16_1, tensor input_lstm_layer_0_cast_fp16_2 = lstm(activation = input_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = input_lstm_layer_0_cell_activation_0, direction = input_lstm_layer_0_direction_0, initial_c = input_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = input_lstm_layer_0_output_sequence_0, recurrent_activation = input_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor("input_lstm_layer_0_cast_fp16")]; tensor input_lstm_h0_squeeze_axes_0 = const()[name = tensor("input_lstm_h0_squeeze_axes_0"), val = tensor([0])]; tensor input_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor("input_lstm_h0_squeeze_cast_fp16")]; tensor input_lstm_c0_squeeze_axes_0 = const()[name = tensor("input_lstm_c0_squeeze_axes_0"), val = tensor([0])]; tensor input_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor("input_lstm_c0_squeeze_cast_fp16")]; tensor input_direction_0 = const()[name = tensor("input_direction_0"), val = tensor("forward")]; tensor input_output_sequence_0 = const()[name = tensor("input_output_sequence_0"), val = tensor(true)]; tensor input_recurrent_activation_0 = const()[name = tensor("input_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_cell_activation_0 = const()[name = tensor("input_cell_activation_0"), val = tensor("tanh")]; tensor input_activation_0 = const()[name = tensor("input_activation_0"), val = tensor("tanh")]; tensor concat_4_to_fp16 = const()[name = tensor("concat_4_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7871040)))]; tensor concat_5_to_fp16 = const()[name = tensor("concat_5_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11147904)))]; tensor concat_3_to_fp16 = const()[name = tensor("concat_3_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14424768)))]; tensor input_cast_fp16_0, tensor input_cast_fp16_1, tensor input_cast_fp16_2 = lstm(activation = input_activation_0, bias = concat_3_to_fp16, cell_activation = input_cell_activation_0, direction = input_direction_0, initial_c = input_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_h0_squeeze_cast_fp16, output_sequence = input_output_sequence_0, recurrent_activation = input_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = input_lstm_layer_0_cast_fp16_0)[name = tensor("input_cast_fp16")]; tensor obj_3_axis_0 = const()[name = tensor("obj_3_axis_0"), val = tensor(0)]; tensor obj_3_cast_fp16 = stack(axis = obj_3_axis_0, values = (input_lstm_layer_0_cast_fp16_1, input_cast_fp16_1))[name = tensor("obj_3_cast_fp16")]; tensor obj_3_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("obj_3_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor obj_axis_0 = const()[name = tensor("obj_axis_0"), val = tensor(0)]; tensor obj_cast_fp16 = stack(axis = obj_axis_0, values = (input_lstm_layer_0_cast_fp16_2, input_cast_fp16_2))[name = tensor("obj_cast_fp16")]; tensor obj_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("obj_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor transpose_0_perm_0 = const()[name = tensor("transpose_0_perm_0"), val = tensor([1, 2, 0])]; tensor transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = input_cast_fp16_0)[name = tensor("transpose_1")]; tensor decoder = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor("cast_2")]; tensor c_out = cast(dtype = obj_cast_fp16_to_fp32_dtype_0, x = obj_cast_fp16)[name = tensor("cast_3")]; tensor h_out = cast(dtype = obj_3_cast_fp16_to_fp32_dtype_0, x = obj_3_cast_fp16)[name = tensor("cast_4")]; tensor target_length_tmp = identity(x = target_length)[name = tensor("target_length_tmp")]; } -> (decoder, h_out, c_out); }