File size: 1,482 Bytes
48b48f9
b0bff61
48b48f9
b0bff61
48b48f9
b0bff61
 
 
 
48b48f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0bff61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apple-amlr
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
tags:
- rag
- compression
- retrieval
- generation
---

# CLaRa-7B-Base (Compression-16 & 128)

The CLaRa-7B-Base model is our foundational unified RAG model with built-in semantic document compression (16× and 128x).  
It provides a base compressor + generator capable of producing answers directly from compressed document representations.

**Training recipe:** Trained using QA-guided semantic compression and paraphrase consistency objectives.  
**Benchmarks:** Strong baseline performance across multi-hop QA tasks under a 16× compression ratio.

---

## More details and usage examples:

Paper: [CLaRa: Bridging Retrieval and Generation with Continuous Latent Reasoning](https://arxiv.org/abs/2511.18659)  
GitHub: https://github.com/apple/ml-clara

---

## Example Usage

```python
from transformers import AutoModel

unirag = AutoModel.from_pretrained(
    "/mnt/ceph_rbd/model/CLaRa-7B-Base/compression-16",
    trust_remote_code=True
).to("cuda")

documents = [
    [
        "Weldenia is a monotypic genus of flowering plant in the family Commelinaceae...",
        "Hagsatera is a genus of orchids native to Mexico and Guatemala...",
        "Alsobia is a genus of flowering plants native to Mexico and Central America..."
    ]
]

questions = [""]

out = unirag.generate_from_paraphrase(
    questions=questions,
    documents=documents,
    max_new_tokens=64
)

print("Generated answer:", out)