Update README.md
Browse files
README.md
CHANGED
|
@@ -55,6 +55,8 @@ The models can also be used to resume a training or as initialization for new tr
|
|
| 55 |
Please follow instructions in our [GitHub repo](https://github.com/apple/ml-tic-clip) to create the evaluation sets or follow [DataComp](https://github.com/mlfoundations/datacomp) for the standard evaluations on 38 datasets.
|
| 56 |
|
| 57 |
The following snippet assumes the TiC-DataComp data has been prepared and following the instructions in the GitHub repo.
|
|
|
|
|
|
|
| 58 |
```bash
|
| 59 |
YEAR=2016 # There are no models before 2016 since data from 2014-2016 were compined into one year
|
| 60 |
REPO="apple/TiC-CLIP-bestpool-sequential"
|
|
@@ -74,7 +76,9 @@ torchrun --nproc_per_node 8 --nnodes 1 \
|
|
| 74 |
--save_frequency 1 \
|
| 75 |
--resume
|
| 76 |
popd
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
## Evaluate Model
|
| 79 |
# Evaluate a ViT-B/16 model on TiC/Retrieval/Yearly/$YEAR and
|
| 80 |
# TiC/DataCompNet/Yearly/$YEAR
|
|
@@ -83,6 +87,28 @@ python ../dataset_creation/tic-datacomp/generate_tasklist.py --yaml-path tasklis
|
|
| 83 |
python evaluate.py --data_dir data/ --train_output_dir ./results --use_model "ViT-B-16 $YEAR.pt" --skip_hf --skip_db --skip_notification
|
| 84 |
```
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
## Training Details
|
| 87 |
|
| 88 |
### Training Data
|
|
|
|
| 55 |
Please follow instructions in our [GitHub repo](https://github.com/apple/ml-tic-clip) to create the evaluation sets or follow [DataComp](https://github.com/mlfoundations/datacomp) for the standard evaluations on 38 datasets.
|
| 56 |
|
| 57 |
The following snippet assumes the TiC-DataComp data has been prepared and following the instructions in the GitHub repo.
|
| 58 |
+
|
| 59 |
+
### Training
|
| 60 |
```bash
|
| 61 |
YEAR=2016 # There are no models before 2016 since data from 2014-2016 were compined into one year
|
| 62 |
REPO="apple/TiC-CLIP-bestpool-sequential"
|
|
|
|
| 76 |
--save_frequency 1 \
|
| 77 |
--resume
|
| 78 |
popd
|
| 79 |
+
```
|
| 80 |
+
### Evaluation
|
| 81 |
+
```bash
|
| 82 |
## Evaluate Model
|
| 83 |
# Evaluate a ViT-B/16 model on TiC/Retrieval/Yearly/$YEAR and
|
| 84 |
# TiC/DataCompNet/Yearly/$YEAR
|
|
|
|
| 87 |
python evaluate.py --data_dir data/ --train_output_dir ./results --use_model "ViT-B-16 $YEAR.pt" --skip_hf --skip_db --skip_notification
|
| 88 |
```
|
| 89 |
|
| 90 |
+
### OpenCLIP Load and Inference Example
|
| 91 |
+
```python
|
| 92 |
+
import open_clip
|
| 93 |
+
from huggingface_hub import hf_hub_download
|
| 94 |
+
filename = hf_hub_download(repo_id="apple/TiC-CLIP-bestpool-sequential", filename="checkpoints/2016.pt")
|
| 95 |
+
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-16', filename)
|
| 96 |
+
tokenizer = open_clip.get_tokenizer('ViT-B-16')
|
| 97 |
+
|
| 98 |
+
image = preprocess(Image.open("image.png").convert('RGB')).unsqueeze(0)
|
| 99 |
+
text = tokenizer(["a diagram", "a dog", "a cat"])
|
| 100 |
+
|
| 101 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 102 |
+
image_features = model.encode_image(image)
|
| 103 |
+
text_features = model.encode_text(text)
|
| 104 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 105 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 106 |
+
|
| 107 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 108 |
+
|
| 109 |
+
print("Label probs:", text_probs)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
## Training Details
|
| 113 |
|
| 114 |
### Training Data
|