--- library_name: peft license: mit base_model: gpt2-medium tags: - generated_from_trainer model-index: - name: Se124M100KInfPrompt_WT_EOS_medium results: [] --- # Se124M100KInfPrompt_WT_EOS_medium This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8652 | 0.0655 | 20 | 2.6742 | | 2.6735 | 0.1309 | 40 | 2.4205 | | 2.3498 | 0.1964 | 60 | 2.0554 | | 1.9542 | 0.2619 | 80 | 1.6239 | | 1.5661 | 0.3273 | 100 | 1.2791 | | 1.3052 | 0.3928 | 120 | 1.0776 | | 1.1291 | 0.4583 | 140 | 0.9537 | | 1.0151 | 0.5237 | 160 | 0.8837 | | 0.9431 | 0.5892 | 180 | 0.8324 | | 0.8821 | 0.6547 | 200 | 0.8044 | | 0.8536 | 0.7201 | 220 | 0.7846 | | 0.8371 | 0.7856 | 240 | 0.7712 | | 0.8281 | 0.8511 | 260 | 0.7628 | | 0.8077 | 0.9165 | 280 | 0.7553 | | 0.8013 | 0.9820 | 300 | 0.7501 | | 0.7948 | 1.0458 | 320 | 0.7447 | | 0.783 | 1.1113 | 340 | 0.7394 | | 0.7727 | 1.1768 | 360 | 0.7372 | | 0.777 | 1.2422 | 380 | 0.7331 | | 0.7711 | 1.3077 | 400 | 0.7309 | | 0.7642 | 1.3732 | 420 | 0.7289 | | 0.7631 | 1.4386 | 440 | 0.7267 | | 0.7581 | 1.5041 | 460 | 0.7250 | | 0.7606 | 1.5696 | 480 | 0.7233 | | 0.7578 | 1.6350 | 500 | 0.7223 | | 0.7562 | 1.7005 | 520 | 0.7208 | | 0.7497 | 1.7660 | 540 | 0.7195 | | 0.7508 | 1.8314 | 560 | 0.7179 | | 0.7476 | 1.8969 | 580 | 0.7168 | | 0.7503 | 1.9624 | 600 | 0.7165 | | 0.7414 | 2.0262 | 620 | 0.7164 | | 0.7425 | 2.0917 | 640 | 0.7159 | | 0.7451 | 2.1571 | 660 | 0.7146 | | 0.7452 | 2.2226 | 680 | 0.7147 | | 0.7446 | 2.2881 | 700 | 0.7138 | | 0.7437 | 2.3535 | 720 | 0.7140 | | 0.7397 | 2.4190 | 740 | 0.7131 | | 0.7426 | 2.4845 | 760 | 0.7130 | | 0.7421 | 2.5499 | 780 | 0.7127 | | 0.7408 | 2.6154 | 800 | 0.7135 | | 0.7413 | 2.6809 | 820 | 0.7135 | | 0.7404 | 2.7463 | 840 | 0.7131 | | 0.7373 | 2.8118 | 860 | 0.7128 | | 0.7451 | 2.8773 | 880 | 0.7134 | | 0.7407 | 2.9427 | 900 | 0.7127 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu118 - Datasets 3.5.0 - Tokenizers 0.21.1