---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:6
- loss:MultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
widget:
- source_sentence: MY_FAVORITE_NEWS
sentences:
- 'Show HN: I''ve built a tiny hand-held keyboard'
- LLMs are mortally terrified of exceptions
- My first contribution to Linux
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on google/embeddinggemma-300m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m)
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bebechien/embedding-gemma-finetuned-hn")
# Run inference
queries = [
"MY_FAVORITE_NEWS",
]
documents = [
"Show HN: I've built a tiny hand-held keyboard",
'My first contribution to Linux',
'LLMs are mortally terrified of exceptions',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.5876, -0.2637, 0.6615]])
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6 training samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 6 samples:
| | anchor | positive | negative |
|:--------|:-------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
MY_FAVORITE_NEWS | A small number of samples can poison LLMs of any size | Python 3.14 is here. How fast is it? |
| MY_FAVORITE_NEWS | Show HN: I've built a tiny hand-held keyboard | A built-in 'off switch' to stop persistent pain |
| MY_FAVORITE_NEWS | A beginner's guide to deploying LLMs with AMD on Windows using PyTorch | Show HN: Open source, logical multi-master PostgreSQL replication |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 1
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `prompts`: task: classification | query:
#### All Hyperparameters