Update README.md
Browse files
README.md
CHANGED
|
@@ -86,36 +86,6 @@ model-index:
|
|
| 86 |
name: sts test
|
| 87 |
type: sts-test
|
| 88 |
metrics:
|
| 89 |
-
- type: pearson_cosine
|
| 90 |
-
value: 0.4121931859939639
|
| 91 |
-
name: Pearson Cosine
|
| 92 |
-
- type: spearman_cosine
|
| 93 |
-
value: 0.4188435395565816
|
| 94 |
-
name: Spearman Cosine
|
| 95 |
-
- type: pearson_manhattan
|
| 96 |
-
value: 0.43722674169112186
|
| 97 |
-
name: Pearson Manhattan
|
| 98 |
-
- type: spearman_manhattan
|
| 99 |
-
value: 0.4419489193187135
|
| 100 |
-
name: Spearman Manhattan
|
| 101 |
-
- type: pearson_euclidean
|
| 102 |
-
value: 0.4165228130620452
|
| 103 |
-
name: Pearson Euclidean
|
| 104 |
-
- type: spearman_euclidean
|
| 105 |
-
value: 0.42369527784158983
|
| 106 |
-
name: Spearman Euclidean
|
| 107 |
-
- type: pearson_dot
|
| 108 |
-
value: 0.13511926964573803
|
| 109 |
-
name: Pearson Dot
|
| 110 |
-
- type: spearman_dot
|
| 111 |
-
value: 0.13030376975519165
|
| 112 |
-
name: Spearman Dot
|
| 113 |
-
- type: pearson_max
|
| 114 |
-
value: 0.43722674169112186
|
| 115 |
-
name: Pearson Max
|
| 116 |
-
- type: spearman_max
|
| 117 |
-
value: 0.4419489193187135
|
| 118 |
-
name: Spearman Max
|
| 119 |
- type: pearson_cosine
|
| 120 |
value: 0.7746195773286169
|
| 121 |
name: Pearson Cosine
|
|
@@ -176,42 +146,13 @@ model-index:
|
|
| 176 |
- type: spearman_max
|
| 177 |
value: 0.7193195268794856
|
| 178 |
name: Spearman Max
|
| 179 |
-
- type: pearson_cosine
|
| 180 |
-
value: 0.7408543477349779
|
| 181 |
-
name: Pearson Cosine
|
| 182 |
-
- type: spearman_cosine
|
| 183 |
-
value: 0.7193195268794856
|
| 184 |
-
name: Spearman Cosine
|
| 185 |
-
- type: pearson_manhattan
|
| 186 |
-
value: 0.7347205138738226
|
| 187 |
-
name: Pearson Manhattan
|
| 188 |
-
- type: spearman_manhattan
|
| 189 |
-
value: 0.716277121285963
|
| 190 |
-
name: Spearman Manhattan
|
| 191 |
-
- type: pearson_euclidean
|
| 192 |
-
value: 0.7317357204840789
|
| 193 |
-
name: Pearson Euclidean
|
| 194 |
-
- type: spearman_euclidean
|
| 195 |
-
value: 0.7133569462956698
|
| 196 |
-
name: Spearman Euclidean
|
| 197 |
-
- type: pearson_dot
|
| 198 |
-
value: 0.5412116736741877
|
| 199 |
-
name: Pearson Dot
|
| 200 |
-
- type: spearman_dot
|
| 201 |
-
value: 0.5324862690078268
|
| 202 |
-
name: Spearman Dot
|
| 203 |
-
- type: pearson_max
|
| 204 |
-
value: 0.7408543477349779
|
| 205 |
-
name: Pearson Max
|
| 206 |
-
- type: spearman_max
|
| 207 |
-
value: 0.7193195268794856
|
| 208 |
-
name: Spearman Max
|
| 209 |
---
|
| 210 |
|
| 211 |
# SentenceTransformer based on microsoft/deberta-v3-small
|
| 212 |
|
| 213 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 214 |
|
|
|
|
| 215 |
## Model Details
|
| 216 |
|
| 217 |
### Model Description
|
|
@@ -315,22 +256,7 @@ You can finetune this model on your own dataset.
|
|
| 315 |
|
| 316 |
### Metrics
|
| 317 |
|
| 318 |
-
#### Semantic Similarity
|
| 319 |
-
* Dataset: `sts-test`
|
| 320 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 321 |
|
| 322 |
-
| Metric | Value |
|
| 323 |
-
|:--------------------|:-----------|
|
| 324 |
-
| pearson_cosine | 0.4122 |
|
| 325 |
-
| **spearman_cosine** | **0.4188** |
|
| 326 |
-
| pearson_manhattan | 0.4372 |
|
| 327 |
-
| spearman_manhattan | 0.4419 |
|
| 328 |
-
| pearson_euclidean | 0.4165 |
|
| 329 |
-
| spearman_euclidean | 0.4237 |
|
| 330 |
-
| pearson_dot | 0.1351 |
|
| 331 |
-
| spearman_dot | 0.1303 |
|
| 332 |
-
| pearson_max | 0.4372 |
|
| 333 |
-
| spearman_max | 0.4419 |
|
| 334 |
|
| 335 |
#### Semantic Similarity
|
| 336 |
* Dataset: `sts-test`
|
|
@@ -349,39 +275,7 @@ You can finetune this model on your own dataset.
|
|
| 349 |
| pearson_max | 0.7746 |
|
| 350 |
| spearman_max | 0.769 |
|
| 351 |
|
| 352 |
-
#### Semantic Similarity
|
| 353 |
-
* Dataset: `sts-test`
|
| 354 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 355 |
-
|
| 356 |
-
| Metric | Value |
|
| 357 |
-
|:--------------------|:-----------|
|
| 358 |
-
| pearson_cosine | 0.7409 |
|
| 359 |
-
| **spearman_cosine** | **0.7193** |
|
| 360 |
-
| pearson_manhattan | 0.7347 |
|
| 361 |
-
| spearman_manhattan | 0.7163 |
|
| 362 |
-
| pearson_euclidean | 0.7317 |
|
| 363 |
-
| spearman_euclidean | 0.7134 |
|
| 364 |
-
| pearson_dot | 0.5412 |
|
| 365 |
-
| spearman_dot | 0.5325 |
|
| 366 |
-
| pearson_max | 0.7409 |
|
| 367 |
-
| spearman_max | 0.7193 |
|
| 368 |
-
|
| 369 |
-
#### Semantic Similarity
|
| 370 |
-
* Dataset: `sts-test`
|
| 371 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 372 |
|
| 373 |
-
| Metric | Value |
|
| 374 |
-
|:--------------------|:-----------|
|
| 375 |
-
| pearson_cosine | 0.7409 |
|
| 376 |
-
| **spearman_cosine** | **0.7193** |
|
| 377 |
-
| pearson_manhattan | 0.7347 |
|
| 378 |
-
| spearman_manhattan | 0.7163 |
|
| 379 |
-
| pearson_euclidean | 0.7317 |
|
| 380 |
-
| spearman_euclidean | 0.7134 |
|
| 381 |
-
| pearson_dot | 0.5412 |
|
| 382 |
-
| spearman_dot | 0.5325 |
|
| 383 |
-
| pearson_max | 0.7409 |
|
| 384 |
-
| spearman_max | 0.7193 |
|
| 385 |
|
| 386 |
<!--
|
| 387 |
## Bias, Risks and Limitations
|
|
@@ -1227,16 +1121,6 @@ You can finetune this model on your own dataset.
|
|
| 1227 |
}
|
| 1228 |
```
|
| 1229 |
|
| 1230 |
-
#### CoSENTLoss
|
| 1231 |
-
```bibtex
|
| 1232 |
-
@online{kexuefm-8847,
|
| 1233 |
-
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 1234 |
-
author={Su Jianlin},
|
| 1235 |
-
year={2022},
|
| 1236 |
-
month={Jan},
|
| 1237 |
-
url={https://kexue.fm/archives/8847},
|
| 1238 |
-
}
|
| 1239 |
-
```
|
| 1240 |
|
| 1241 |
#### GISTEmbedLoss
|
| 1242 |
```bibtex
|
|
|
|
| 86 |
name: sts test
|
| 87 |
type: sts-test
|
| 88 |
metrics:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
- type: pearson_cosine
|
| 90 |
value: 0.7746195773286169
|
| 91 |
name: Pearson Cosine
|
|
|
|
| 146 |
- type: spearman_max
|
| 147 |
value: 0.7193195268794856
|
| 148 |
name: Spearman Max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
---
|
| 150 |
|
| 151 |
# SentenceTransformer based on microsoft/deberta-v3-small
|
| 152 |
|
| 153 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 154 |
|
| 155 |
+
|
| 156 |
## Model Details
|
| 157 |
|
| 158 |
### Model Description
|
|
|
|
| 256 |
|
| 257 |
### Metrics
|
| 258 |
|
|
|
|
|
|
|
|
|
|
| 259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
#### Semantic Similarity
|
| 262 |
* Dataset: `sts-test`
|
|
|
|
| 275 |
| pearson_max | 0.7746 |
|
| 276 |
| spearman_max | 0.769 |
|
| 277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
<!--
|
| 281 |
## Bias, Risks and Limitations
|
|
|
|
| 1121 |
}
|
| 1122 |
```
|
| 1123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1124 |
|
| 1125 |
#### GISTEmbedLoss
|
| 1126 |
```bibtex
|