---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
- sentence-transformers/stsb
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: Two teenage girls conversing next to lockers.
sentences:
- Girls talking about their problems next to lockers.
- A bully tries to pop a balloon without being caught in the act.
- Two dogs standing together in the yard.
- source_sentence: A young man in a heavy brown winter coat stands in front of a blue
railing with his arms spread.
sentences:
- a boy holding onto the wall of an old brick house's raised foundation as construction
occurs
- The railing is in front of a frozen lake.
- A skateboarder is doing tricks for a competition.
- source_sentence: A shirtless man with a white hat and no shoes sitting crisscross
with his back against the wall holding up a white plastic cup.
sentences:
- A long-haired boy riding his skateboard at a fast pace over a stone wall with
graffiti.
- A man is sitting crisscross
- a child in a black ninja suit does a kick
- source_sentence: A light colored dog leaps over a hurdle.
sentences:
- Men sit on the bus going to work,
- A dog jumps over a obstacel.
- a man standing on his motorbike.
- source_sentence: people are standing near water with a boat heading their direction
sentences:
- People are standing near water with a large blue boat heading their direction.
- Two people climbing on a wooden scaffold.
- The dogs are near the toy.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.7660217567682521
name: Pearson Cosine
- type: spearman_cosine
value: 0.7681125489633884
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7917532885619117
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.794675885405013
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7860948725725584
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7895594746178918
name: Spearman Euclidean
- type: pearson_dot
value: 0.644843928972524
name: Pearson Dot
- type: spearman_dot
value: 0.6427588138459626
name: Spearman Dot
- type: pearson_max
value: 0.7917532885619117
name: Pearson Max
- type: spearman_max
value: 0.794675885405013
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6730608840700584
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.5814725160598755
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7170495061078964
name: Cosine F1
- type: cosine_f1_threshold
value: 0.4670722782611847
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5977392321184954
name: Cosine Precision
- type: cosine_recall
value: 0.895866802979407
name: Cosine Recall
- type: cosine_ap
value: 0.7193483203625508
name: Cosine Ap
- type: dot_accuracy
value: 0.6444764576541057
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 71.95508575439453
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7094262988661364
name: Dot F1
- type: dot_f1_threshold
value: 53.77289581298828
name: Dot F1 Threshold
- type: dot_precision
value: 0.5779411764705882
name: Dot Precision
- type: dot_recall
value: 0.9183584051409376
name: Dot Recall
- type: dot_ap
value: 0.6828334101602328
name: Dot Ap
- type: manhattan_accuracy
value: 0.6664644779740693
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 213.6251678466797
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7047102517243412
name: Manhattan F1
- type: manhattan_f1_threshold
value: 245.20578002929688
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5908461842625544
name: Manhattan Precision
- type: manhattan_recall
value: 0.8729370527238206
name: Manhattan Recall
- type: manhattan_ap
value: 0.7132026586783923
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6621426946698006
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 10.358880996704102
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7024081560907013
name: Euclidean F1
- type: euclidean_f1_threshold
value: 12.010871887207031
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5864970645792563
name: Euclidean Precision
- type: euclidean_recall
value: 0.8754198919234701
name: Euclidean Recall
- type: euclidean_ap
value: 0.7101786172295015
name: Euclidean Ap
- type: max_accuracy
value: 0.6730608840700584
name: Max Accuracy
- type: max_accuracy_threshold
value: 213.6251678466797
name: Max Accuracy Threshold
- type: max_f1
value: 0.7170495061078964
name: Max F1
- type: max_f1_threshold
value: 245.20578002929688
name: Max F1 Threshold
- type: max_precision
value: 0.5977392321184954
name: Max Precision
- type: max_recall
value: 0.9183584051409376
name: Max Recall
- type: max_ap
value: 0.7193483203625508
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaseline")
# Run inference
sentences = [
'people are standing near water with a boat heading their direction',
'People are standing near water with a large blue boat heading their direction.',
'The dogs are near the toy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.766 |
| **spearman_cosine** | **0.7681** |
| pearson_manhattan | 0.7918 |
| spearman_manhattan | 0.7947 |
| pearson_euclidean | 0.7861 |
| spearman_euclidean | 0.7896 |
| pearson_dot | 0.6448 |
| spearman_dot | 0.6428 |
| pearson_max | 0.7918 |
| spearman_max | 0.7947 |
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6731 |
| cosine_accuracy_threshold | 0.5815 |
| cosine_f1 | 0.717 |
| cosine_f1_threshold | 0.4671 |
| cosine_precision | 0.5977 |
| cosine_recall | 0.8959 |
| cosine_ap | 0.7193 |
| dot_accuracy | 0.6445 |
| dot_accuracy_threshold | 71.9551 |
| dot_f1 | 0.7094 |
| dot_f1_threshold | 53.7729 |
| dot_precision | 0.5779 |
| dot_recall | 0.9184 |
| dot_ap | 0.6828 |
| manhattan_accuracy | 0.6665 |
| manhattan_accuracy_threshold | 213.6252 |
| manhattan_f1 | 0.7047 |
| manhattan_f1_threshold | 245.2058 |
| manhattan_precision | 0.5908 |
| manhattan_recall | 0.8729 |
| manhattan_ap | 0.7132 |
| euclidean_accuracy | 0.6621 |
| euclidean_accuracy_threshold | 10.3589 |
| euclidean_f1 | 0.7024 |
| euclidean_f1_threshold | 12.0109 |
| euclidean_precision | 0.5865 |
| euclidean_recall | 0.8754 |
| euclidean_ap | 0.7102 |
| max_accuracy | 0.6731 |
| max_accuracy_threshold | 213.6252 |
| max_f1 | 0.717 |
| max_f1_threshold | 245.2058 |
| max_precision | 0.5977 |
| max_recall | 0.9184 |
| **max_ap** | **0.7193** |
## Training Details
### Training Dataset
#### stanfordnlp/snli
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 314,315 training samples
* Columns: sentence1, sentence2, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details |
A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | 0 |
| Children smiling and waving at camera | There are children present | 0 |
| A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | 0 |
* Loss: [AdaptiveLayerLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
```
### Evaluation Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1, sentence2, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 |
| A young child is riding a horse. | A child is riding a horse. | 0.95 |
| A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 |
* Loss: [AdaptiveLayerLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 5e-06
- `weight_decay`: 1e-07
- `num_train_epochs`: 2
- `warmup_ratio`: 0.5
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates
#### All Hyperparameters