boltuix commited on
Commit
bade32b
Β·
verified Β·
1 Parent(s): 530b4e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -47,18 +47,18 @@ metrics:
47
  library_name: transformers
48
  ---
49
 
50
- ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs-oFsaBT02qc6fHOkisspeCbbWYewABhHI-_AcFaxR6DU298q4kiu_x3hga7P49fS8J1HMoxtSXBkXHqOFsqhvtqSakIteeEP7V7Thgjw2rhDBx_upegj16CZWkt2uvTs6DSEkDNB2BO0kswIDX7-DxnWyTRFiyCgT-3YFtSqbjyZaqygg9JTh7ZEI-k/s16000/bert-%20Emoji.png)
51
 
52
- # 🧠 boltuix/bert-mini β€” Ultra Lightweight BERT for Real-Time NLP πŸš€
53
 
54
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
55
  [![Model Size](https://img.shields.io/badge/Size-~40MB-blue)](#)
56
  [![Tasks](https://img.shields.io/badge/Tasks-NLI%20%7C%20Intent--Detection%20%7C%20Sentiment%20Analysis-orange)](#)
57
  [![Inference Speed](https://img.shields.io/badge/Optimized%20For-Edge%20Devices-green)](#)
58
 
59
- `bert-mini` is a compact, real-time Natural Language Processing (NLP) model derived from the original BERT architecture. Engineered for **low-latency** and **on-device inference**, it delivers impressive language understanding while keeping memory and compute requirements minimal β€” making it perfect for **IoT devices**, **mobile apps**, **wearables**, and **edge AI systems**.
60
 
61
- Unlike larger BERT variants, `bert-mini` retains deep **contextual understanding** even in resource-constrained environments, making it ideal for practical, production-ready applications in 2025 and beyond.
62
 
63
  ---
64
 
@@ -110,7 +110,7 @@ pip install transformers torch
110
  from transformers import pipeline
111
 
112
  # Load the pipeline
113
- mlm_pipeline = pipeline("fill-mask", model="boltuix/bert-mini")
114
 
115
  # Try a sentence
116
  result = mlm_pipeline("The robot can [MASK] the room in minutes.")
@@ -180,7 +180,7 @@ Input: Please [MASK] the door before leaving.
180
 
181
  ## 🏷️ Tags
182
 
183
- `#bert-mini` `#edge-nlp` `#lightweight-models` `#on-device-ai`
184
  `#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`
185
  `#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`
186
  `#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`
 
47
  library_name: transformers
48
  ---
49
 
50
+ ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhaQsGBpErn8tWyNzfwFkJa0TGL1MdGj94JoZYXP0nz_BBvoXuVC5JiUco2EbKb2CkefJ53uqo8gYTPf8OTp86wIRq7plhfAvRjMskOpspd5HH57J-llcLNNGdeVMDslACVCHnnzKiAA9eNoIVK2366IJGASCL4u5tSL2H1nIMkni00TSTYSeXOk14qZ2s/s16000/NeuroBERT-Mini.png)
51
 
52
+ # 🧠 boltuix/NeuroBERT-Mini β€” Ultra Lightweight BERT for Real-Time NLP πŸš€
53
 
54
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
55
  [![Model Size](https://img.shields.io/badge/Size-~40MB-blue)](#)
56
  [![Tasks](https://img.shields.io/badge/Tasks-NLI%20%7C%20Intent--Detection%20%7C%20Sentiment%20Analysis-orange)](#)
57
  [![Inference Speed](https://img.shields.io/badge/Optimized%20For-Edge%20Devices-green)](#)
58
 
59
+ `NeuroBERT-Mini` is a compact, real-time Natural Language Processing (NLP) model derived from the original BERT architecture. Engineered for **low-latency** and **on-device inference**, it delivers impressive language understanding while keeping memory and compute requirements minimal β€” making it perfect for **IoT devices**, **mobile apps**, **wearables**, and **edge AI systems**.
60
 
61
+ Unlike larger BERT variants, `NeuroBERT-Mini` retains deep **contextual understanding** even in resource-constrained environments, making it ideal for practical, production-ready applications in 2025 and beyond.
62
 
63
  ---
64
 
 
110
  from transformers import pipeline
111
 
112
  # Load the pipeline
113
+ mlm_pipeline = pipeline("fill-mask", model="boltuix/NeuroBERT-Mini")
114
 
115
  # Try a sentence
116
  result = mlm_pipeline("The robot can [MASK] the room in minutes.")
 
180
 
181
  ## 🏷️ Tags
182
 
183
+ `#NeuroBERT-Mini` `#edge-nlp` `#lightweight-models` `#on-device-ai`
184
  `#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`
185
  `#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`
186
  `#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`