Text Classification
Transformers
Safetensors
English
bert
fill-mask
BERT
NeuroBERT
transformer
pre-training
nlp
tiny-bert
edge-ai
low-resource
micro-nlp
quantized
iot
wearable-ai
offline-assistant
intent-detection
real-time
smart-home
embedded-systems
command-classification
toy-robotics
voice-ai
eco-ai
english
lightweight
mobile-nlp
ner
Update README.md
Browse files
README.md
CHANGED
|
@@ -47,18 +47,18 @@ metrics:
|
|
| 47 |
library_name: transformers
|
| 48 |
---
|
| 49 |
|
| 50 |
-
](https://opensource.org/licenses/MIT)
|
| 55 |
[](#)
|
| 56 |
[](#)
|
| 57 |
[](#)
|
| 58 |
|
| 59 |
-
`
|
| 60 |
|
| 61 |
-
Unlike larger BERT variants, `
|
| 62 |
|
| 63 |
---
|
| 64 |
|
|
@@ -110,7 +110,7 @@ pip install transformers torch
|
|
| 110 |
from transformers import pipeline
|
| 111 |
|
| 112 |
# Load the pipeline
|
| 113 |
-
mlm_pipeline = pipeline("fill-mask", model="boltuix/
|
| 114 |
|
| 115 |
# Try a sentence
|
| 116 |
result = mlm_pipeline("The robot can [MASK] the room in minutes.")
|
|
@@ -180,7 +180,7 @@ Input: Please [MASK] the door before leaving.
|
|
| 180 |
|
| 181 |
## π·οΈ Tags
|
| 182 |
|
| 183 |
-
`#
|
| 184 |
`#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`
|
| 185 |
`#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`
|
| 186 |
`#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`
|
|
|
|
| 47 |
library_name: transformers
|
| 48 |
---
|
| 49 |
|
| 50 |
+

|
| 51 |
|
| 52 |
+
# π§ boltuix/NeuroBERT-Mini β Ultra Lightweight BERT for Real-Time NLP π
|
| 53 |
|
| 54 |
[](https://opensource.org/licenses/MIT)
|
| 55 |
[](#)
|
| 56 |
[](#)
|
| 57 |
[](#)
|
| 58 |
|
| 59 |
+
`NeuroBERT-Mini` is a compact, real-time Natural Language Processing (NLP) model derived from the original BERT architecture. Engineered for **low-latency** and **on-device inference**, it delivers impressive language understanding while keeping memory and compute requirements minimal β making it perfect for **IoT devices**, **mobile apps**, **wearables**, and **edge AI systems**.
|
| 60 |
|
| 61 |
+
Unlike larger BERT variants, `NeuroBERT-Mini` retains deep **contextual understanding** even in resource-constrained environments, making it ideal for practical, production-ready applications in 2025 and beyond.
|
| 62 |
|
| 63 |
---
|
| 64 |
|
|
|
|
| 110 |
from transformers import pipeline
|
| 111 |
|
| 112 |
# Load the pipeline
|
| 113 |
+
mlm_pipeline = pipeline("fill-mask", model="boltuix/NeuroBERT-Mini")
|
| 114 |
|
| 115 |
# Try a sentence
|
| 116 |
result = mlm_pipeline("The robot can [MASK] the room in minutes.")
|
|
|
|
| 180 |
|
| 181 |
## π·οΈ Tags
|
| 182 |
|
| 183 |
+
`#NeuroBERT-Mini` `#edge-nlp` `#lightweight-models` `#on-device-ai`
|
| 184 |
`#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`
|
| 185 |
`#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`
|
| 186 |
`#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`
|