Upload 2 files
Browse files- briarmbg.py +5 -3
- example_inference.py +1 -2
briarmbg.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
|
|
|
| 4 |
|
| 5 |
class REBNCONV(nn.Module):
|
| 6 |
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
|
@@ -344,11 +345,12 @@ class myrebnconv(nn.Module):
|
|
| 344 |
return self.rl(self.bn(self.conv(x)))
|
| 345 |
|
| 346 |
|
| 347 |
-
class BriaRMBG(nn.Module):
|
| 348 |
|
| 349 |
-
def __init__(self,in_ch
|
| 350 |
super(BriaRMBG,self).__init__()
|
| 351 |
-
|
|
|
|
| 352 |
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 353 |
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 354 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 5 |
|
| 6 |
class REBNCONV(nn.Module):
|
| 7 |
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
|
|
|
| 345 |
return self.rl(self.bn(self.conv(x)))
|
| 346 |
|
| 347 |
|
| 348 |
+
class BriaRMBG(nn.Module, PyTorchModelHubMixin):
|
| 349 |
|
| 350 |
+
def __init__(self,config:dict={"in_ch":3,"out_ch":1}):
|
| 351 |
super(BriaRMBG,self).__init__()
|
| 352 |
+
in_ch=config["in_ch"]
|
| 353 |
+
out_ch=config["out_ch"]
|
| 354 |
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 355 |
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 356 |
|
example_inference.py
CHANGED
|
@@ -7,12 +7,11 @@ from huggingface_hub import hf_hub_download
|
|
| 7 |
|
| 8 |
def example_inference():
|
| 9 |
|
| 10 |
-
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
| 11 |
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
| 12 |
|
| 13 |
net = BriaRMBG()
|
| 14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
-
net.
|
| 16 |
net.to(device)
|
| 17 |
net.eval()
|
| 18 |
|
|
|
|
| 7 |
|
| 8 |
def example_inference():
|
| 9 |
|
|
|
|
| 10 |
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
| 11 |
|
| 12 |
net = BriaRMBG()
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4-experiment")
|
| 15 |
net.to(device)
|
| 16 |
net.eval()
|
| 17 |
|