Upload utilities.py
Browse files- utilities.py +25 -0
utilities.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torchvision.transforms.functional import normalize
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
| 7 |
+
if len(im.shape) < 3:
|
| 8 |
+
im = im[:, :, np.newaxis]
|
| 9 |
+
# orig_im_size=im.shape[0:2]
|
| 10 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 11 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
| 12 |
+
image = torch.divide(im_tensor,255.0)
|
| 13 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 14 |
+
return image
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
|
| 18 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
| 19 |
+
ma = torch.max(result)
|
| 20 |
+
mi = torch.min(result)
|
| 21 |
+
result = (result-mi)/(ma-mi)
|
| 22 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
| 23 |
+
im_array = np.squeeze(im_array)
|
| 24 |
+
return im_array
|
| 25 |
+
|