--- library_name: peft license: gemma base_model: google/gemma-3-27b-it tags: - base_model:adapter:google/gemma-3-27b-it - lora - transformers pipeline_tag: text-generation model-index: - name: gemma-finetune-d1 results: [] --- # gemma-finetune-d1 This model is a fine-tuned version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.709 | 0.4008 | 100 | 0.2020 | | 1.4114 | 0.8016 | 200 | 0.1829 | | 1.3051 | 1.2004 | 300 | 0.1783 | | 1.2553 | 1.6012 | 400 | 0.1725 | | 1.1126 | 2.0 | 500 | 0.1677 | | 1.05 | 2.4008 | 600 | 0.1712 | | 0.9771 | 2.8016 | 700 | 0.1715 | ### Framework versions - PEFT 0.17.1 - Transformers 4.56.2 - Pytorch 2.8.0+cu128 - Datasets 4.1.1 - Tokenizers 0.22.1