cdreetz commited on
Commit
4c59036
·
verified ·
1 Parent(s): cc0a015

Add model card

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
4
+ tags:
5
+ - triton
6
+ - kernel
7
+ - code-generation
8
+ - fine-tuned
9
+ datasets:
10
+ - triton-kernels-6k
11
+ language:
12
+ - en
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ # Triton Kernel Code Generation Model
17
+
18
+ This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct specialized for generating Triton GPU kernels.
19
+
20
+ ## Model Details
21
+
22
+ - **Base Model**: Qwen/Qwen2.5-1.5B-Instruct
23
+ - **Fine-tuned on**: 6000 examples of Triton kernel code
24
+ - **Training Loss**: 0.20
25
+ - **Eval Perplexity**: 1.22
26
+
27
+ ## Usage
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+
32
+ model = AutoModelForCausalLM.from_pretrained("cdreetz/kwen2.5-1.5b")
33
+ tokenizer = AutoTokenizer.from_pretrained("cdreetz/kwen2.5-1.5b")
34
+
35
+ prompt = "Write a Triton kernel for element-wise addition:"
36
+ inputs = tokenizer(prompt, return_tensors="pt")
37
+ outputs = model.generate(**inputs, max_new_tokens=512)
38
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
39
+ print(response)
40
+ ```
41
+
42
+ ## Training Details
43
+
44
+ - **Epochs**: 2
45
+ - **Batch Size**: 2
46
+ - **Learning Rate**: 1e-5
47
+ - **Dataset Size**: 6000 examples
48
+
49
+ ## Performance
50
+
51
+ The model generates syntactically correct Triton kernels with proper:
52
+ - `@triton.jit` decorators
53
+ - Kernel function signatures
54
+ - Launch function implementations
55
+ - Memory access patterns
56
+ - Grid configurations
57
+
58
+ ## Limitations
59
+
60
+ - Specialized for Triton kernel generation only
61
+ - May require prompt engineering for optimal results
62
+ - Generated kernels should be tested before production use