--- license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - triton - kernel - code-generation - fine-tuned datasets: - triton-kernels-6k language: - en pipeline_tag: text-generation --- # Triton Kernel Code Generation Model This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct specialized for generating Triton GPU kernels. ## Model Details - **Base Model**: Qwen/Qwen2.5-1.5B-Instruct - **Fine-tuned on**: 6000 examples of Triton kernel code - **Eval Loss**: 0.20 - **Eval Perplexity**: 1.22 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("cdreetz/kwen2.5-1.5b") tokenizer = AutoTokenizer.from_pretrained("cdreetz/kwen2.5-1.5b") prompt = "Write a Triton kernel for element-wise addition:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Details - **Epochs**: 2 - **Batch Size**: 2 - **Learning Rate**: 1e-5 - **Dataset Size**: 6000 examples ## Performance The model generates syntactically correct Triton kernels with proper: - `@triton.jit` decorators - Kernel function signatures - Launch function implementations - Memory access patterns - Grid configurations ## Limitations - Specialized for Triton kernel generation only - May require prompt engineering for optimal results - Generated kernels should be tested before production use