Upload tokenizer
Browse files- README.md +7 -7
- tokenizer.json +0 -9
- tokenizer_config.json +0 -8
README.md
CHANGED
|
@@ -1,20 +1,20 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
datasets:
|
| 4 |
- chrisvoncsefalvay/vaers-outcomes
|
| 5 |
-
language:
|
| 6 |
-
- en
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
- f1
|
| 10 |
- precision
|
| 11 |
- recall
|
| 12 |
-
library_name: transformers
|
| 13 |
pipeline_tag: text-classification
|
| 14 |
-
tags:
|
| 15 |
-
- medical
|
| 16 |
-
- pharmacovigilance
|
| 17 |
-
- vaccines
|
| 18 |
---
|
| 19 |
|
| 20 |
DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
license: apache-2.0
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- medical
|
| 8 |
+
- pharmacovigilance
|
| 9 |
+
- vaccines
|
| 10 |
datasets:
|
| 11 |
- chrisvoncsefalvay/vaers-outcomes
|
|
|
|
|
|
|
| 12 |
metrics:
|
| 13 |
- accuracy
|
| 14 |
- f1
|
| 15 |
- precision
|
| 16 |
- recall
|
|
|
|
| 17 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
---
|
| 19 |
|
| 20 |
DAEDRA (Detecting Adverse Event Dispositions for Regulatory Affairs) is a pharmacovigilance language model intended to facilitate the rapid identification and extraction of high-consequence outcomes from passive pharmacovigilance reporting. It was trained on the VAERS data set, and focuses on three main outcomes:
|
tokenizer.json
CHANGED
|
@@ -52,15 +52,6 @@
|
|
| 52 |
"rstrip": false,
|
| 53 |
"normalized": false,
|
| 54 |
"special": true
|
| 55 |
-
},
|
| 56 |
-
{
|
| 57 |
-
"id": 30522,
|
| 58 |
-
"content": "Pfizer",
|
| 59 |
-
"single_word": false,
|
| 60 |
-
"lstrip": false,
|
| 61 |
-
"rstrip": false,
|
| 62 |
-
"normalized": true,
|
| 63 |
-
"special": false
|
| 64 |
}
|
| 65 |
],
|
| 66 |
"normalizer": {
|
|
|
|
| 52 |
"rstrip": false,
|
| 53 |
"normalized": false,
|
| 54 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
}
|
| 56 |
],
|
| 57 |
"normalizer": {
|
tokenizer_config.json
CHANGED
|
@@ -39,14 +39,6 @@
|
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
| 42 |
-
},
|
| 43 |
-
"30522": {
|
| 44 |
-
"content": "Pfizer",
|
| 45 |
-
"lstrip": false,
|
| 46 |
-
"normalized": true,
|
| 47 |
-
"rstrip": false,
|
| 48 |
-
"single_word": false,
|
| 49 |
-
"special": false
|
| 50 |
}
|
| 51 |
},
|
| 52 |
"clean_up_tokenization_spaces": true,
|
|
|
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
}
|
| 43 |
},
|
| 44 |
"clean_up_tokenization_spaces": true,
|