Update README.md
Browse files
README.md
CHANGED
|
@@ -12,36 +12,8 @@ pipeline_tag: sentence-similarity
|
|
| 12 |
license: apache-2.0
|
| 13 |
---
|
| 14 |
|
| 15 |
-
#
|
| 16 |
|
| 17 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/ruri-large-pt](https://huggingface.co/cl-nagoya/ruri-large-pt). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 18 |
-
|
| 19 |
-
## Model Details
|
| 20 |
-
|
| 21 |
-
### Model Description
|
| 22 |
-
- **Model Type:** Sentence Transformer
|
| 23 |
-
- **Base model:** [cl-nagoya/ruri-large-pt](https://huggingface.co/cl-nagoya/ruri-large-pt) <!-- at revision b87e00f95f09502aaac8449867f3618ca5908ce8 -->
|
| 24 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 25 |
-
- **Output Dimensionality:** 1024 tokens
|
| 26 |
-
- **Similarity Function:** Cosine Similarity
|
| 27 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 28 |
-
<!-- - **Language:** Unknown -->
|
| 29 |
-
<!-- - **License:** Unknown -->
|
| 30 |
-
|
| 31 |
-
### Model Sources
|
| 32 |
-
|
| 33 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 34 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 35 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 36 |
-
|
| 37 |
-
### Full Model Architecture
|
| 38 |
-
|
| 39 |
-
```
|
| 40 |
-
MySentenceTransformer(
|
| 41 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 42 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 43 |
-
)
|
| 44 |
-
```
|
| 45 |
|
| 46 |
## Usage
|
| 47 |
|
|
@@ -55,11 +27,12 @@ pip install -U sentence-transformers
|
|
| 55 |
|
| 56 |
Then you can load this model and run inference.
|
| 57 |
```python
|
|
|
|
| 58 |
from sentence_transformers import SentenceTransformer
|
| 59 |
|
| 60 |
# Download from the 🤗 Hub
|
| 61 |
-
model = SentenceTransformer("cl-nagoya/ruri-large
|
| 62 |
-
|
| 63 |
sentences = [
|
| 64 |
'The weather is lovely today.',
|
| 65 |
"It's so sunny outside!",
|
|
@@ -69,50 +42,70 @@ embeddings = model.encode(sentences)
|
|
| 69 |
print(embeddings.shape)
|
| 70 |
# [3, 1024]
|
| 71 |
|
| 72 |
-
|
| 73 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 74 |
print(similarities.shape)
|
| 75 |
# [3, 3]
|
| 76 |
```
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
</details>
|
| 84 |
-
-->
|
| 85 |
|
| 86 |
-
<!--
|
| 87 |
-
### Downstream Usage (Sentence Transformers)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
<details><summary>Click to expand</summary>
|
| 92 |
-
|
| 93 |
-
</details>
|
| 94 |
-
-->
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
-->
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
-->
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 112 |
-
-->
|
| 113 |
|
| 114 |
## Training Details
|
| 115 |
|
|
|
|
| 116 |
### Framework Versions
|
| 117 |
- Python: 3.10.13
|
| 118 |
- Sentence Transformers: 3.0.0
|
|
@@ -122,24 +115,10 @@ You can finetune this model on your own dataset.
|
|
| 122 |
- Datasets: 2.19.1
|
| 123 |
- Tokenizers: 0.19.1
|
| 124 |
|
| 125 |
-
## Citation
|
| 126 |
|
| 127 |
### BibTeX
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 133 |
-
-->
|
| 134 |
-
|
| 135 |
-
<!--
|
| 136 |
-
## Model Card Authors
|
| 137 |
-
|
| 138 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 139 |
-
-->
|
| 140 |
-
|
| 141 |
-
<!--
|
| 142 |
-
## Model Card Contact
|
| 143 |
-
|
| 144 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 145 |
-
-->
|
|
|
|
| 12 |
license: apache-2.0
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Ruri: Japanese General Text Embeddings
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Usage
|
| 19 |
|
|
|
|
| 27 |
|
| 28 |
Then you can load this model and run inference.
|
| 29 |
```python
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
from sentence_transformers import SentenceTransformer
|
| 32 |
|
| 33 |
# Download from the 🤗 Hub
|
| 34 |
+
model = SentenceTransformer("cl-nagoya/ruri-large")
|
| 35 |
+
|
| 36 |
sentences = [
|
| 37 |
'The weather is lovely today.',
|
| 38 |
"It's so sunny outside!",
|
|
|
|
| 42 |
print(embeddings.shape)
|
| 43 |
# [3, 1024]
|
| 44 |
|
| 45 |
+
similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1))
|
|
|
|
| 46 |
print(similarities.shape)
|
| 47 |
# [3, 3]
|
| 48 |
```
|
| 49 |
|
| 50 |
+
## Benchmarks
|
| 51 |
+
|
| 52 |
+
### JMTEB
|
| 53 |
+
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
|
| 54 |
+
|
| 55 |
+
|Model|#Param.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification|Avg.|
|
| 56 |
+
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|
| 57 |
+
|[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|49.64|82.05|73.47|91.83|51.79|62.57|68.56|
|
| 58 |
+
|[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|37.62|83.18|73.73|91.48|50.56|62.51|66.51|
|
| 59 |
+
|[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|40.23|78.72|73.07|91.16|44.77|62.44|65.07|
|
| 60 |
+
|[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|40.53|80.56|74.66|90.95|48.41|62.49|66.27|
|
| 61 |
+
|[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|59.02|78.71|76.82|91.90|49.78|66.39|70.44|
|
| 62 |
+
||||||||||
|
| 63 |
+
|[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|40.12|76.56|72.66|91.63|44.88|62.33|64.70|
|
| 64 |
+
|[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|67.27|80.07|67.62|93.03|46.91|62.19|69.52|
|
| 65 |
+
|[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|68.21|79.84|69.30|92.85|48.26|62.26|70.12|
|
| 66 |
+
|[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|70.98|79.70|72.89|92.96|51.24|62.15|71.65|
|
| 67 |
+
||||||||||
|
| 68 |
+
|OpenAI/text-embedding-ada-002|-|64.38|79.02|69.75|93.04|48.30|62.40|69.48|
|
| 69 |
+
|OpenAI/text-embedding-3-small|-|66.39|79.46|73.06|92.92|51.06|62.27|70.86|
|
| 70 |
+
|OpenAI/text-embedding-3-large|-|74.48|82.52|77.58|93.58|53.32|62.35|73.97|
|
| 71 |
+
||||||||||
|
| 72 |
+
|[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|69.41|82.79|76.22|93.00|51.19|62.11|71.53|
|
| 73 |
+
|[Ruri-Base](https://huggingface.co/cl-nagoya/ruri-base)|111M|69.82|82.87|75.58|92.91|54.16|62.38|71.91|
|
| 74 |
+
|[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.02|83.13|77.43|92.99|51.82|62.29|73.31|
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
### Model Description
|
| 81 |
+
- **Model Type:** Sentence Transformer
|
| 82 |
+
- **Base model:** [cl-nagoya/ruri-large-pt](https://huggingface.co/cl-nagoya/ruri-large-pt)
|
| 83 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 84 |
+
- **Output Dimensionality:** 1024
|
| 85 |
+
- **Similarity Function:** Cosine Similarity
|
| 86 |
+
- **Language:** Japanese
|
| 87 |
+
- **License:** Apache 2.0
|
| 88 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 89 |
|
| 90 |
+
### Model Sources
|
|
|
|
| 91 |
|
| 92 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 93 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 94 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 95 |
|
| 96 |
+
### Full Model Architecture
|
|
|
|
| 97 |
|
| 98 |
+
```
|
| 99 |
+
MySentenceTransformer(
|
| 100 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 101 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 102 |
+
)
|
| 103 |
+
```
|
| 104 |
|
|
|
|
|
|
|
| 105 |
|
| 106 |
## Training Details
|
| 107 |
|
| 108 |
+
|
| 109 |
### Framework Versions
|
| 110 |
- Python: 3.10.13
|
| 111 |
- Sentence Transformers: 3.0.0
|
|
|
|
| 115 |
- Datasets: 2.19.1
|
| 116 |
- Tokenizers: 0.19.1
|
| 117 |
|
| 118 |
+
<!-- ## Citation
|
| 119 |
|
| 120 |
### BibTeX
|
| 121 |
+
-->
|
| 122 |
|
| 123 |
+
## License
|
| 124 |
+
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|