Update README.md
Browse files
README.md
CHANGED
|
@@ -6,136 +6,9 @@ tags:
|
|
| 6 |
- sentence-transformers
|
| 7 |
- sentence-similarity
|
| 8 |
- feature-extraction
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
## Model Details
|
| 16 |
-
|
| 17 |
-
### Model Description
|
| 18 |
-
- **Model Type:** Sentence Transformer
|
| 19 |
-
- **Base model:** [tohoku-nlp/bert-large-japanese-v2](https://huggingface.co/tohoku-nlp/bert-large-japanese-v2) <!-- at revision 75b828083735e953e3ed13e2ad6ea945c1fdb390 -->
|
| 20 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 21 |
-
- **Output Dimensionality:** 1024 tokens
|
| 22 |
-
- **Similarity Function:** Cosine Similarity
|
| 23 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 24 |
-
<!-- - **Language:** Unknown -->
|
| 25 |
-
<!-- - **License:** Unknown -->
|
| 26 |
-
|
| 27 |
-
### Model Sources
|
| 28 |
-
|
| 29 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 30 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 31 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 32 |
-
|
| 33 |
-
### Full Model Architecture
|
| 34 |
-
|
| 35 |
-
```
|
| 36 |
-
MySentenceTransformer(
|
| 37 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 38 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 39 |
-
)
|
| 40 |
-
```
|
| 41 |
-
|
| 42 |
-
## Usage
|
| 43 |
-
|
| 44 |
-
### Direct Usage (Sentence Transformers)
|
| 45 |
-
|
| 46 |
-
First install the Sentence Transformers library:
|
| 47 |
-
|
| 48 |
-
```bash
|
| 49 |
-
pip install -U sentence-transformers
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
Then you can load this model and run inference.
|
| 53 |
-
```python
|
| 54 |
-
from sentence_transformers import SentenceTransformer
|
| 55 |
-
|
| 56 |
-
# Download from the 🤗 Hub
|
| 57 |
-
model = SentenceTransformer("hpprc/ruri-v2-pt-large")
|
| 58 |
-
# Run inference
|
| 59 |
-
sentences = [
|
| 60 |
-
'The weather is lovely today.',
|
| 61 |
-
"It's so sunny outside!",
|
| 62 |
-
'He drove to the stadium.',
|
| 63 |
-
]
|
| 64 |
-
embeddings = model.encode(sentences)
|
| 65 |
-
print(embeddings.shape)
|
| 66 |
-
# [3, 1024]
|
| 67 |
-
|
| 68 |
-
# Get the similarity scores for the embeddings
|
| 69 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 70 |
-
print(similarities.shape)
|
| 71 |
-
# [3, 3]
|
| 72 |
-
```
|
| 73 |
-
|
| 74 |
-
<!--
|
| 75 |
-
### Direct Usage (Transformers)
|
| 76 |
-
|
| 77 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 78 |
-
|
| 79 |
-
</details>
|
| 80 |
-
-->
|
| 81 |
-
|
| 82 |
-
<!--
|
| 83 |
-
### Downstream Usage (Sentence Transformers)
|
| 84 |
-
|
| 85 |
-
You can finetune this model on your own dataset.
|
| 86 |
-
|
| 87 |
-
<details><summary>Click to expand</summary>
|
| 88 |
-
|
| 89 |
-
</details>
|
| 90 |
-
-->
|
| 91 |
-
|
| 92 |
-
<!--
|
| 93 |
-
### Out-of-Scope Use
|
| 94 |
-
|
| 95 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 96 |
-
-->
|
| 97 |
-
|
| 98 |
-
<!--
|
| 99 |
-
## Bias, Risks and Limitations
|
| 100 |
-
|
| 101 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 102 |
-
-->
|
| 103 |
-
|
| 104 |
-
<!--
|
| 105 |
-
### Recommendations
|
| 106 |
-
|
| 107 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 108 |
-
-->
|
| 109 |
-
|
| 110 |
-
## Training Details
|
| 111 |
-
|
| 112 |
-
### Framework Versions
|
| 113 |
-
- Python: 3.10.13
|
| 114 |
-
- Sentence Transformers: 3.1.1
|
| 115 |
-
- Transformers: 4.45.1
|
| 116 |
-
- PyTorch: 2.4.1+cu124
|
| 117 |
-
- Accelerate: 0.34.2
|
| 118 |
-
- Datasets: 2.19.1
|
| 119 |
-
- Tokenizers: 0.20.0
|
| 120 |
-
|
| 121 |
-
## Citation
|
| 122 |
-
|
| 123 |
-
### BibTeX
|
| 124 |
-
|
| 125 |
-
<!--
|
| 126 |
-
## Glossary
|
| 127 |
-
|
| 128 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 129 |
-
-->
|
| 130 |
-
|
| 131 |
-
<!--
|
| 132 |
-
## Model Card Authors
|
| 133 |
-
|
| 134 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 135 |
-
-->
|
| 136 |
-
|
| 137 |
-
<!--
|
| 138 |
-
## Model Card Contact
|
| 139 |
-
|
| 140 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 141 |
-
-->
|
|
|
|
| 6 |
- sentence-transformers
|
| 7 |
- sentence-similarity
|
| 8 |
- feature-extraction
|
| 9 |
+
license: apache-2.0
|
| 10 |
+
datasets:
|
| 11 |
+
- cl-nagoya/ruri-dataset-v2-pt
|
| 12 |
+
language:
|
| 13 |
+
- ja
|
| 14 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|