Sentence Similarity
Safetensors
Japanese
modernbert
feature-extraction
hpprc commited on
Commit
b58f3a1
·
verified ·
1 Parent(s): 109a5cf

Upload 17 files

Browse files
results-len512/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8283702018329007,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.9184549356223176,
9
+ "macro_f1": 0.681235599078341
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.927038626609442,
13
+ "macro_f1": 0.7726829268292683
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9411134903640257,
19
+ "macro_f1": 0.8283702018329007
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.5918838130358689,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4536,
9
+ "macro_f1": 0.4460589777163412
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.5986,
13
+ "macro_f1": 0.5938685525496514
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.5964,
19
+ "macro_f1": 0.5918838130358689
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7849950487595191,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7624200688637481,
9
+ "macro_f1": 0.7429537614615437
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8288243974422036,
13
+ "macro_f1": 0.8195455157035694
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.831876260928043,
19
+ "macro_f1": 0.7849950487595191
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.87335723142719,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8558780127889818,
9
+ "macro_f1": 0.8485633592400048
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8691588785046729,
13
+ "macro_f1": 0.8625860435889454
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8765971755211835,
19
+ "macro_f1": 0.87335723142719
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5408913333324076,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5182294367942578,
9
+ "homogeneity_score": 0.5083929516751572,
10
+ "completeness_score": 0.5284540682758625
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5895844570616736,
14
+ "homogeneity_score": 0.5798748360491485,
15
+ "completeness_score": 0.5996247778002453
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.547905255250393,
19
+ "homogeneity_score": 0.544426621916416,
20
+ "completeness_score": 0.5514286281531552
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5810872157931731,
24
+ "homogeneity_score": 0.564042246417553,
25
+ "completeness_score": 0.5991944609541024
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.5408913333324076,
31
+ "homogeneity_score": 0.5377939657352733,
32
+ "completeness_score": 0.5440245855267704
33
+ }
34
+ }
35
+ }
36
+ }
results-len512/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5028507755536713,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.4458851291915875,
9
+ "homogeneity_score": 0.48533124402844363,
10
+ "completeness_score": 0.4123691329066709
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.49536644061268514,
14
+ "homogeneity_score": 0.5301463317764765,
15
+ "completeness_score": 0.46486902308967953
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.43838510788950696,
19
+ "homogeneity_score": 0.4772898709546572,
20
+ "completeness_score": 0.40534472422469503
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.49419823370381905,
24
+ "homogeneity_score": 0.5264827004846486,
25
+ "completeness_score": 0.4656444327759002
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.5028507755536713,
31
+ "homogeneity_score": 0.5309796320912937,
32
+ "completeness_score": 0.4775522554756309
33
+ }
34
+ }
35
+ }
36
+ }
results-len512/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6175182481751825,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_similarities",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.7122286558151245,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.6045,
15
+ "accuracy_threshold": 62.02785873413086,
16
+ "binary_f1": 0.6016949152542372,
17
+ "binary_f1_threshold": 606.8050537109375
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.605,
21
+ "accuracy_threshold": 5.562343120574951,
22
+ "binary_f1": 0.6016949152542372,
23
+ "binary_f1_threshold": 40.35772705078125
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.581,
27
+ "accuracy_threshold": 5684.939453125,
28
+ "binary_f1": 0.6050236621769203,
29
+ "binary_f1_threshold": 4571.8681640625
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_similarities": {
34
+ "accuracy": 0.5655,
35
+ "accuracy_threshold": 5684.939453125,
36
+ "binary_f1": 0.6175182481751825,
37
+ "binary_f1_threshold": 4571.8681640625
38
+ }
39
+ }
40
+ }
41
+ }
results-len512/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9327252616959848,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9455943545908806,
9
+ "ndcg@20": 0.9576462577863859,
10
+ "ndcg@40": 0.9654667184941765
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9316403013236408,
14
+ "ndcg@20": 0.9466113531644135,
15
+ "ndcg@40": 0.9552590001860088
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9461990989028242,
19
+ "ndcg@20": 0.9580170663788997,
20
+ "ndcg@40": 0.9657975841385325
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "euclidean_distance": {
25
+ "ndcg@10": 0.9327252616959848,
26
+ "ndcg@20": 0.949185331338756,
27
+ "ndcg@40": 0.9585114997970098
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7448082812189565,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6121673003802282,
9
+ "accuracy@3": 0.7724480842351564,
10
+ "accuracy@5": 0.8245100906697865,
11
+ "accuracy@10": 0.8724773325533782,
12
+ "ndcg@10": 0.7448388962984194,
13
+ "mrr@10": 0.703620988221749
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.19801111436092425,
17
+ "accuracy@3": 0.31354197133664813,
18
+ "accuracy@5": 0.3606317636735888,
19
+ "accuracy@10": 0.4305352442234571,
20
+ "ndcg@10": 0.3070567565407926,
21
+ "mrr@10": 0.2684574297692174
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6107048844691431,
25
+ "accuracy@3": 0.7744954665106757,
26
+ "accuracy@5": 0.8195378765720971,
27
+ "accuracy@10": 0.871014916642293,
28
+ "ndcg@10": 0.7429448986423296,
29
+ "mrr@10": 0.7017048751839619
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.612280701754386,
35
+ "accuracy@3": 0.776608187134503,
36
+ "accuracy@5": 0.8242690058479533,
37
+ "accuracy@10": 0.873391812865497,
38
+ "ndcg@10": 0.7448082812189565,
39
+ "mrr@10": 0.7033651257774068
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.6885528708504698,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5246231155778894,
9
+ "accuracy@3": 0.7195979899497488,
10
+ "accuracy@5": 0.771859296482412,
11
+ "accuracy@10": 0.8160804020100503,
12
+ "ndcg@10": 0.6772692193835311,
13
+ "mrr@10": 0.6321009810959564
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.26532663316582916,
17
+ "accuracy@3": 0.46130653266331656,
18
+ "accuracy@5": 0.5326633165829145,
19
+ "accuracy@10": 0.6100502512562814,
20
+ "ndcg@10": 0.4344150347008597,
21
+ "mrr@10": 0.3784880752971205
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5175879396984925,
25
+ "accuracy@3": 0.7195979899497488,
26
+ "accuracy@5": 0.7628140703517587,
27
+ "accuracy@10": 0.8110552763819096,
28
+ "ndcg@10": 0.671449580225242,
29
+ "mrr@10": 0.6259735183855789
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.5235707121364093,
35
+ "accuracy@3": 0.7291875626880642,
36
+ "accuracy@5": 0.7903711133400201,
37
+ "accuracy@10": 0.8425275827482447,
38
+ "ndcg@10": 0.6885528708504698,
39
+ "mrr@10": 0.6385633089745427
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.4493143159382214,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.3459051724137931,
9
+ "accuracy@3": 0.5247844827586207,
10
+ "accuracy@5": 0.5980603448275862,
11
+ "accuracy@10": 0.6896551724137931,
12
+ "ndcg@10": 0.510986461758995,
13
+ "mrr@10": 0.4545835899014776
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.059267241379310345,
17
+ "accuracy@3": 0.09482758620689655,
18
+ "accuracy@5": 0.12284482758620689,
19
+ "accuracy@10": 0.16918103448275862,
20
+ "ndcg@10": 0.10687041620498051,
21
+ "mrr@10": 0.08792761357416536
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.3545258620689655,
25
+ "accuracy@3": 0.53125,
26
+ "accuracy@5": 0.6088362068965517,
27
+ "accuracy@10": 0.6950431034482759,
28
+ "ndcg@10": 0.5184937025559256,
29
+ "mrr@10": 0.4626274288451007
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.3125,
35
+ "accuracy@3": 0.5055555555555555,
36
+ "accuracy@5": 0.5875,
37
+ "accuracy@10": 0.6583333333333333,
38
+ "ndcg@10": 0.4493143159382214,
39
+ "mrr@10": 0.4254756393298057
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9424351024345127,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.8688524590163934,
9
+ "accuracy@3": 0.9508196721311475,
10
+ "accuracy@5": 0.9836065573770492,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9346504139810682,
13
+ "mrr@10": 0.9158014571948999
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.5573770491803278,
17
+ "accuracy@3": 0.7540983606557377,
18
+ "accuracy@5": 0.8442622950819673,
19
+ "accuracy@10": 0.8934426229508197,
20
+ "ndcg@10": 0.732018537857895,
21
+ "mrr@10": 0.6797456414259695
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.860655737704918,
25
+ "accuracy@3": 0.9426229508196722,
26
+ "accuracy@5": 0.9754098360655737,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9290878579481767,
29
+ "mrr@10": 0.9086846213895394
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.8922764227642277,
35
+ "accuracy@3": 0.9634146341463414,
36
+ "accuracy@5": 0.9735772357723578,
37
+ "accuracy@10": 0.983739837398374,
38
+ "ndcg@10": 0.9424351024345127,
39
+ "mrr@10": 0.9287488708220415
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9717579001048733,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9590163934426229,
9
+ "accuracy@3": 0.9754098360655737,
10
+ "accuracy@5": 0.9918032786885246,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9749873698268802,
13
+ "mrr@10": 0.969535519125683
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.6147540983606558,
17
+ "accuracy@3": 0.8360655737704918,
18
+ "accuracy@5": 0.9262295081967213,
19
+ "accuracy@10": 0.9426229508196722,
20
+ "ndcg@10": 0.7917119670702584,
21
+ "mrr@10": 0.741471506635441
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9426229508196722,
25
+ "accuracy@3": 0.9672131147540983,
26
+ "accuracy@5": 0.9918032786885246,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.967654829355435,
29
+ "mrr@10": 0.9596994535519126
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.943089430894309,
35
+ "accuracy@3": 0.9857723577235772,
36
+ "accuracy@5": 0.9857723577235772,
37
+ "accuracy@10": 0.9939024390243902,
38
+ "ndcg@10": 0.9717579001048733,
39
+ "mrr@10": 0.9643341076267905
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.8658442146344819,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.8032786885245902,
9
+ "accuracy@3": 0.8770491803278688,
10
+ "accuracy@5": 0.9098360655737705,
11
+ "accuracy@10": 0.9590163934426229,
12
+ "ndcg@10": 0.8757852803420108,
13
+ "mrr@10": 0.8499772313296904
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.45081967213114754,
17
+ "accuracy@3": 0.639344262295082,
18
+ "accuracy@5": 0.6721311475409836,
19
+ "accuracy@10": 0.8442622950819673,
20
+ "ndcg@10": 0.6300409997364643,
21
+ "mrr@10": 0.5643605256310176
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.7786885245901639,
25
+ "accuracy@3": 0.8934426229508197,
26
+ "accuracy@5": 0.9180327868852459,
27
+ "accuracy@10": 0.9344262295081968,
28
+ "ndcg@10": 0.8618655596809651,
29
+ "mrr@10": 0.8380692167577413
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.7703252032520326,
35
+ "accuracy@3": 0.8963414634146342,
36
+ "accuracy@5": 0.9186991869918699,
37
+ "accuracy@10": 0.9532520325203252,
38
+ "ndcg@10": 0.8658442146344819,
39
+ "mrr@10": 0.8374032133178474
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.7584805993730833,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.7966088937878548,
9
+ "spearman": 0.773834909663934
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.7970989581874747,
13
+ "spearman": 0.7675081650433571
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.7970989581874747,
17
+ "spearman": 0.7675081650433571
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.6592758306884232,
21
+ "spearman": 0.6290995800692494
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.7868922847118196,
27
+ "spearman": 0.7584805993730833
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8379533343977638,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8437311194400292,
9
+ "spearman": 0.8061512891309451
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8523096056447624,
13
+ "spearman": 0.8118722694367242
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8523096056447624,
17
+ "spearman": 0.8118722694367242
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.6225164078211387,
21
+ "spearman": 0.5546034194858964
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8750484734396219,
27
+ "spearman": 0.8379533343977638
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.8283702018329007
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.5918838130358689
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.7849950487595191
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.87335723142719
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9327252616959848
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7448082812189565
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.6885528708504698
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.4493143159382214
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.9424351024345127
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9717579001048733
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.8658442146344819
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.7584805993730833
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8379533343977638
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.5408913333324076
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.5028507755536713
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6175182481751825
60
+ }
61
+ }
62
+ }