Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,61 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- Intel/orca_dpo_pairs
|
| 4 |
+
base_model:
|
| 5 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
---
|
| 8 |
+
# Fine-tuned Qwen/Qwen2.5-0.5B-Instruct Model
|
| 9 |
+
|
| 10 |
+
## Model Overview
|
| 11 |
+
|
| 12 |
+
This is a fine-tuned version of the Qwen/Qwen2.5-0.5B-Instruct model. The fine-tuning process utilized the Intel/orca_dpo_pairs dataset and applied DPO (Direct Preference Optimization) and LoRA (Low-Rank Adaptation) techniques.
|
| 13 |
+
|
| 14 |
+
**Note**: This fine-tuning was done following the instructions in [this blog](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
|
| 15 |
+
|
| 16 |
+
## Fine-tuning Details
|
| 17 |
+
|
| 18 |
+
- **Base Model**: Qwen/Qwen2.5-0.5B-Instruct
|
| 19 |
+
- **Dataset**: Intel/orca_dpo_pairs
|
| 20 |
+
- **Fine-tuning Method**: DPO + LoRA
|
| 21 |
+
|
| 22 |
+
## Usage Instructions
|
| 23 |
+
|
| 24 |
+
### Install Dependencies
|
| 25 |
+
|
| 26 |
+
Before using this model, make sure you have the following dependencies installed:
|
| 27 |
+
|
| 28 |
+
```bash
|
| 29 |
+
pip install transformers datasets
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
### Load the model
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
import transformers
|
| 36 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 37 |
+
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained("drive/MyDrive/result/Qwen-DPO")
|
| 39 |
+
|
| 40 |
+
message = [
|
| 41 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
| 42 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
| 43 |
+
]
|
| 44 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
| 45 |
+
|
| 46 |
+
pipeline = transformers.pipeline(
|
| 47 |
+
"text-generation",
|
| 48 |
+
model="co-gy/Qwen-DPO",
|
| 49 |
+
tokenizer=tokenizer
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
sequences = pipeline(
|
| 53 |
+
prompt,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
temperature=0.7,
|
| 56 |
+
top_p=0.9,
|
| 57 |
+
num_return_sequences=1,
|
| 58 |
+
max_length=200,
|
| 59 |
+
)
|
| 60 |
+
print(sequences[0]['generated_text'])
|
| 61 |
+
```
|