--- library_name: transformers license: gemma base_model: google/gemma-2b tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 40efc318792ebd56a10f1612e2fce919 results: [] --- # 40efc318792ebd56a10f1612e2fce919 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set: - Loss: 2.4339 - Data Size: 0.5 - Epoch Runtime: 1125.5597 - Accuracy: 0.7509 - F1 Macro: 0.7503 - Rouge1: 0.7508 - Rouge2: 0.0 - Rougel: 0.7509 - Rougelsum: 0.7510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 8.3050 | 0 | 14.1671 | 0.3243 | 0.1890 | 0.3246 | 0.0 | 0.3246 | 0.3244 | | 4.2895 | 1 | 12271 | 3.0390 | 0.0078 | 30.4238 | 0.6819 | 0.6844 | 0.6818 | 0.0 | 0.6819 | 0.6819 | | 2.5474 | 2 | 24542 | 2.6322 | 0.0156 | 51.3774 | 0.7443 | 0.7429 | 0.7440 | 0.0 | 0.7445 | 0.7447 | | 2.5025 | 3 | 36813 | 2.2221 | 0.0312 | 90.2574 | 0.7816 | 0.7810 | 0.7816 | 0.0 | 0.7816 | 0.7815 | | 2.5107 | 4 | 49084 | 2.4528 | 0.0625 | 160.5099 | 0.7479 | 0.7441 | 0.7473 | 0.0 | 0.7478 | 0.7478 | | 2.42 | 5 | 61355 | 2.6393 | 0.125 | 294.8323 | 0.7353 | 0.7324 | 0.7353 | 0.0 | 0.7355 | 0.7354 | | 2.5207 | 6 | 73626 | 2.5955 | 0.25 | 570.8636 | 0.7446 | 0.7434 | 0.7445 | 0.0 | 0.7446 | 0.7446 | | 2.2561 | 7 | 85897 | 2.4339 | 0.5 | 1125.5597 | 0.7509 | 0.7503 | 0.7508 | 0.0 | 0.7509 | 0.7510 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1