--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 43bd7e74faf21e9f15deaaad494b15d5 results: [] --- # 43bd7e74faf21e9f15deaaad494b15d5 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set: - Loss: 5.8488 - Data Size: 1.0 - Epoch Runtime: 120.6807 - Accuracy: 0.7995 - F1 Macro: 0.7842 - Rouge1: 0.7995 - Rouge2: 0.0 - Rougel: 0.7989 - Rougelsum: 0.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 7.4657 | 0 | 5.7654 | 0.6604 | 0.4107 | 0.6616 | 0.0 | 0.6604 | 0.6604 | | No log | 1 | 114 | 79.7619 | 0.0078 | 6.1570 | 0.3349 | 0.2509 | 0.3343 | 0.0 | 0.3355 | 0.3349 | | No log | 2 | 228 | 37.1240 | 0.0156 | 18.8215 | 0.3349 | 0.2509 | 0.3343 | 0.0 | 0.3355 | 0.3349 | | No log | 3 | 342 | 5.1122 | 0.0312 | 30.8926 | 0.6792 | 0.4787 | 0.6792 | 0.0 | 0.6787 | 0.6787 | | 0.4304 | 4 | 456 | 3.2691 | 0.0625 | 39.4693 | 0.6462 | 0.6327 | 0.6462 | 0.0 | 0.6456 | 0.6468 | | 0.4304 | 5 | 570 | 1.8845 | 0.125 | 48.9782 | 0.7983 | 0.7760 | 0.7983 | 0.0 | 0.7983 | 0.7983 | | 0.4304 | 6 | 684 | 2.8282 | 0.25 | 60.8006 | 0.6291 | 0.6291 | 0.6285 | 0.0 | 0.6285 | 0.6279 | | 0.5711 | 7 | 798 | 1.5321 | 0.5 | 75.4529 | 0.8296 | 0.8123 | 0.8296 | 0.0 | 0.8290 | 0.8296 | | 1.0265 | 8.0 | 912 | 1.8242 | 1.0 | 119.6966 | 0.8031 | 0.7856 | 0.8031 | 0.0 | 0.8037 | 0.8025 | | 0.4925 | 9.0 | 1026 | 3.1007 | 1.0 | 117.1617 | 0.7930 | 0.7325 | 0.7930 | 0.0 | 0.7933 | 0.7925 | | 0.3132 | 10.0 | 1140 | 3.5572 | 1.0 | 129.2212 | 0.8308 | 0.8116 | 0.8308 | 0.0 | 0.8308 | 0.8302 | | 0.3243 | 11.0 | 1254 | 5.8488 | 1.0 | 120.6807 | 0.7995 | 0.7842 | 0.7995 | 0.0 | 0.7989 | 0.7995 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1