--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 43d4aa381d5eedf1cfc81e7ccbc49c88 results: [] --- # 43d4aa381d5eedf1cfc81e7ccbc49c88 This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set: - Loss: 1.0078 - Data Size: 1.0 - Epoch Runtime: 5.2641 - Accuracy: 0.7783 - F1 Macro: 0.7466 - Rouge1: 0.7777 - Rouge2: 0.0 - Rougel: 0.7789 - Rougelsum: 0.7789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.7135 | 0 | 1.0609 | 0.3314 | 0.2496 | 0.3308 | 0.0 | 0.3317 | 0.3314 | | No log | 1 | 114 | 0.6662 | 0.0078 | 1.3643 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 | | No log | 2 | 228 | 0.6408 | 0.0156 | 1.4235 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 | | No log | 3 | 342 | 0.6388 | 0.0312 | 1.6159 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 | | 0.0205 | 4 | 456 | 0.6150 | 0.0625 | 1.9014 | 0.6745 | 0.4306 | 0.6751 | 0.0 | 0.6745 | 0.6745 | | 0.0205 | 5 | 570 | 0.6034 | 0.125 | 2.0959 | 0.6869 | 0.4818 | 0.6869 | 0.0 | 0.6869 | 0.6869 | | 0.0205 | 6 | 684 | 0.5188 | 0.25 | 2.6063 | 0.7417 | 0.6524 | 0.7417 | 0.0 | 0.7417 | 0.7417 | | 0.1345 | 7 | 798 | 0.4405 | 0.5 | 3.4198 | 0.8001 | 0.7643 | 0.7995 | 0.0 | 0.8001 | 0.8007 | | 0.3533 | 8.0 | 912 | 0.4843 | 1.0 | 5.1439 | 0.7848 | 0.7230 | 0.7848 | 0.0 | 0.7854 | 0.7854 | | 0.165 | 9.0 | 1026 | 0.6949 | 1.0 | 5.1065 | 0.7830 | 0.7197 | 0.7824 | 0.0 | 0.7830 | 0.7836 | | 0.1128 | 10.0 | 1140 | 0.7659 | 1.0 | 5.1628 | 0.7978 | 0.7537 | 0.7983 | 0.0 | 0.7983 | 0.7981 | | 0.0761 | 11.0 | 1254 | 1.0078 | 1.0 | 5.2641 | 0.7783 | 0.7466 | 0.7777 | 0.0 | 0.7789 | 0.7789 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1