6909a18b0a467eaca827ba377b376876
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the fancyzhx/dbpedia_14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0782
- Data Size: 1.0
- Epoch Runtime: 544.6141
- Accuracy: 0.9894
- F1 Macro: 0.9894
- Rouge1: 0.9894
- Rouge2: 0.0
- Rougel: 0.9894
- Rougelsum: 0.9894
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 2.6445 | 0 | 18.2744 | 0.0527 | 0.0268 | 0.0527 | 0.0 | 0.0526 | 0.0527 |
| 0.1827 | 1 | 17500 | 0.0949 | 0.0078 | 22.8367 | 0.9807 | 0.9806 | 0.9807 | 0.0 | 0.9807 | 0.9807 |
| 0.0612 | 2 | 35000 | 0.0715 | 0.0156 | 26.5846 | 0.9844 | 0.9844 | 0.9844 | 0.0 | 0.9844 | 0.9844 |
| 0.0547 | 3 | 52500 | 0.0723 | 0.0312 | 33.9875 | 0.9843 | 0.9843 | 0.9844 | 0.0 | 0.9843 | 0.9843 |
| 0.0584 | 4 | 70000 | 0.0591 | 0.0625 | 51.6546 | 0.9864 | 0.9864 | 0.9865 | 0.0 | 0.9864 | 0.9864 |
| 0.0463 | 5 | 87500 | 0.0700 | 0.125 | 84.1001 | 0.9855 | 0.9854 | 0.9855 | 0.0 | 0.9855 | 0.9855 |
| 0.0532 | 6 | 105000 | 0.0516 | 0.25 | 150.5917 | 0.9884 | 0.9884 | 0.9884 | 0.0 | 0.9884 | 0.9884 |
| 0.0004 | 7 | 122500 | 0.0472 | 0.5 | 282.0686 | 0.9893 | 0.9893 | 0.9893 | 0.0 | 0.9893 | 0.9893 |
| 0.0283 | 8.0 | 140000 | 0.0486 | 1.0 | 544.2507 | 0.9899 | 0.9899 | 0.9900 | 0.0 | 0.9899 | 0.9900 |
| 0.0289 | 9.0 | 157500 | 0.0605 | 1.0 | 541.2594 | 0.9887 | 0.9887 | 0.9887 | 0.0 | 0.9887 | 0.9887 |
| 0.0323 | 10.0 | 175000 | 0.0671 | 1.0 | 544.2476 | 0.9880 | 0.9880 | 0.9880 | 0.0 | 0.9880 | 0.9880 |
| 0.0235 | 11.0 | 192500 | 0.0782 | 1.0 | 544.6141 | 0.9894 | 0.9894 | 0.9894 | 0.0 | 0.9894 | 0.9894 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 3