--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 7d89ba274ad8c57c19fc44dd42b35f96 results: [] --- # 7d89ba274ad8c57c19fc44dd42b35f96 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the google/boolq dataset. It achieves the following results on the evaluation set: - Loss: 2.6552 - Data Size: 0.5 - Epoch Runtime: 31.5298 - Accuracy: 0.6213 - F1 Macro: 0.3832 - Rouge1: 0.6213 - Rouge2: 0.0 - Rougel: 0.6207 - Rougelsum: 0.6210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 11.2514 | 0 | 5.5727 | 0.3808 | 0.2831 | 0.3808 | 0.0 | 0.3811 | 0.3811 | | No log | 1 | 294 | 21.3760 | 0.0078 | 5.8753 | 0.3909 | 0.3194 | 0.3915 | 0.0 | 0.3915 | 0.3912 | | No log | 2 | 588 | 6.8944 | 0.0156 | 6.9392 | 0.3787 | 0.2747 | 0.3787 | 0.0 | 0.3793 | 0.3790 | | No log | 3 | 882 | 2.6485 | 0.0312 | 8.7283 | 0.6219 | 0.3850 | 0.6219 | 0.0 | 0.6215 | 0.6219 | | 0.2746 | 4 | 1176 | 2.6519 | 0.0625 | 10.2106 | 0.6192 | 0.4498 | 0.6192 | 0.0 | 0.6192 | 0.6189 | | 0.2675 | 5 | 1470 | 2.7448 | 0.125 | 14.0979 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 | | 0.4191 | 6 | 1764 | 2.8210 | 0.25 | 20.4202 | 0.4020 | 0.3329 | 0.4017 | 0.0 | 0.4029 | 0.4020 | | 2.711 | 7 | 2058 | 2.6552 | 0.5 | 31.5298 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1