af90df61e0e39707162c89e6a1f49368

This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6628
  • Data Size: 0.125
  • Epoch Runtime: 2.0236
  • Accuracy: 0.6914
  • F1 Macro: 0.4207
  • Rouge1: 0.6924
  • Rouge2: 0.0
  • Rougel: 0.6914
  • Rougelsum: 0.6914

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7392 0 0.8850 0.3125 0.2391 0.3115 0.0 0.3125 0.3125
No log 1 267 0.6287 0.0078 1.6666 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 2 534 0.6846 0.0156 1.1551 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 3 801 0.6374 0.0312 1.3000 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 4 1068 0.6354 0.0625 1.5172 0.6885 0.4196 0.6885 0.0 0.6885 0.6885
0.0361 5 1335 0.6628 0.125 2.0236 0.6914 0.4207 0.6924 0.0 0.6914 0.6914

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/af90df61e0e39707162c89e6a1f49368

Finetuned
(62)
this model

Evaluation results