af90df61e0e39707162c89e6a1f49368
This model is a fine-tuned version of distilbert/distilbert-base-uncased-distilled-squad on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6628
- Data Size: 0.125
- Epoch Runtime: 2.0236
- Accuracy: 0.6914
- F1 Macro: 0.4207
- Rouge1: 0.6924
- Rouge2: 0.0
- Rougel: 0.6914
- Rougelsum: 0.6914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7392 | 0 | 0.8850 | 0.3125 | 0.2391 | 0.3115 | 0.0 | 0.3125 | 0.3125 |
| No log | 1 | 267 | 0.6287 | 0.0078 | 1.6666 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 2 | 534 | 0.6846 | 0.0156 | 1.1551 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 3 | 801 | 0.6374 | 0.0312 | 1.3000 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 4 | 1068 | 0.6354 | 0.0625 | 1.5172 | 0.6885 | 0.4196 | 0.6885 | 0.0 | 0.6885 | 0.6885 |
| 0.0361 | 5 | 1335 | 0.6628 | 0.125 | 2.0236 | 0.6914 | 0.4207 | 0.6924 | 0.0 | 0.6914 | 0.6914 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 4