--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased-distilled-squad tags: - generated_from_trainer metrics: - accuracy model-index: - name: b3e36b8ecaa0de9195fc36f8913303b8 results: [] --- # b3e36b8ecaa0de9195fc36f8913303b8 This model is a fine-tuned version of [distilbert/distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad) on the contemmcm/trec dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Data Size: 1.0 - Epoch Runtime: 5.4157 - Accuracy: 0.9667 - F1 Macro: 0.9567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:| | No log | 0 | 0 | 1.8271 | 0 | 0.7633 | 0.1021 | 0.0430 | | No log | 1 | 170 | 1.6646 | 0.0078 | 0.9938 | 0.3583 | 0.1980 | | No log | 2 | 340 | 1.5154 | 0.0156 | 1.0284 | 0.5333 | 0.4079 | | No log | 3 | 510 | 1.1134 | 0.0312 | 1.1448 | 0.9021 | 0.7548 | | No log | 4 | 680 | 0.5776 | 0.0625 | 1.2973 | 0.9104 | 0.7653 | | 0.0547 | 5 | 850 | 0.2355 | 0.125 | 1.7117 | 0.9521 | 0.8007 | | 0.0547 | 6 | 1020 | 0.2012 | 0.25 | 2.1348 | 0.9542 | 0.9309 | | 0.2029 | 7 | 1190 | 0.2062 | 0.5 | 3.2885 | 0.9563 | 0.9313 | | 0.141 | 8.0 | 1360 | 0.1672 | 1.0 | 5.5069 | 0.9625 | 0.9589 | | 0.0709 | 9.0 | 1530 | 0.1640 | 1.0 | 5.4317 | 0.975 | 0.9776 | | 0.0595 | 10.0 | 1700 | 0.1848 | 1.0 | 5.3818 | 0.9646 | 0.9432 | | 0.0368 | 11.0 | 1870 | 0.1740 | 1.0 | 5.4152 | 0.9688 | 0.9647 | | 0.0257 | 12.0 | 2040 | 0.3008 | 1.0 | 5.3703 | 0.9563 | 0.9349 | | 0.0137 | 13.0 | 2210 | 0.2582 | 1.0 | 5.4157 | 0.9667 | 0.9567 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1