--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: ca8aebc8d2d06211b9317c1e9d5c74cd results: [] --- # ca8aebc8d2d06211b9317c1e9d5c74cd This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the google/boolq dataset. It achieves the following results on the evaluation set: - Loss: 3.9882 - Data Size: 1.0 - Epoch Runtime: 734.1698 - Accuracy: 0.6235 - F1 Macro: 0.6163 - Rouge1: 0.6238 - Rouge2: 0.0 - Rougel: 0.6235 - Rougelsum: 0.6238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 8.0175 | 0 | 20.6655 | 0.5928 | 0.4152 | 0.5928 | 0.0 | 0.5919 | 0.5925 | | No log | 1 | 294 | 18.6013 | 0.0078 | 27.0807 | 0.3781 | 0.2751 | 0.3781 | 0.0 | 0.3785 | 0.3781 | | No log | 2 | 588 | 12.0732 | 0.0156 | 36.0150 | 0.6072 | 0.4104 | 0.6075 | 0.0 | 0.6068 | 0.6075 | | No log | 3 | 882 | 21.2906 | 0.0312 | 57.1575 | 0.6216 | 0.3909 | 0.6216 | 0.0 | 0.6213 | 0.6216 | | 0.5979 | 4 | 1176 | 4.9192 | 0.0625 | 82.7569 | 0.4038 | 0.3602 | 0.4035 | 0.0 | 0.4038 | 0.4038 | | 0.2704 | 5 | 1470 | 4.7668 | 0.125 | 121.8431 | 0.5524 | 0.5049 | 0.5522 | 0.0 | 0.5530 | 0.5527 | | 0.4559 | 6 | 1764 | 3.0337 | 0.25 | 202.6585 | 0.3952 | 0.3242 | 0.3952 | 0.0 | 0.3958 | 0.3955 | | 2.8035 | 7 | 2058 | 2.7901 | 0.5 | 390.2641 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 | | 2.7666 | 8.0 | 2352 | 2.6635 | 1.0 | 736.9165 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 | | 2.7882 | 9.0 | 2646 | 2.6738 | 1.0 | 734.9518 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 | | 2.4314 | 10.0 | 2940 | 2.7440 | 1.0 | 734.0090 | 0.6492 | 0.4912 | 0.6492 | 0.0 | 0.6486 | 0.6492 | | 1.596 | 11.0 | 3234 | 2.8961 | 1.0 | 728.1010 | 0.6618 | 0.6328 | 0.6618 | 0.0 | 0.6621 | 0.6615 | | 0.8903 | 12.0 | 3528 | 3.9882 | 1.0 | 734.1698 | 0.6235 | 0.6163 | 0.6238 | 0.0 | 0.6235 | 0.6238 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.2.0 - Tokenizers 0.22.1