--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: ddfcd73bbe6123a96753ab5b4f63585e results: [] --- # ddfcd73bbe6123a96753ab5b4f63585e This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the dim/tldr_news dataset. It achieves the following results on the evaluation set: - Loss: 8.8694 - Data Size: 1.0 - Epoch Runtime: 318.5639 - Accuracy: 0.7592 - F1 Macro: 0.7855 - Rouge1: 0.7599 - Rouge2: 0.0 - Rougel: 0.7592 - Rougelsum: 0.7592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 14.8617 | 0 | 7.6791 | 0.3011 | 0.1662 | 0.3018 | 0.0 | 0.3011 | 0.3011 | | No log | 1 | 178 | 21.2796 | 0.0078 | 9.5885 | 0.2891 | 0.1516 | 0.2898 | 0.0 | 0.2891 | 0.2891 | | No log | 2 | 356 | 8.3821 | 0.0156 | 23.9192 | 0.5938 | 0.4083 | 0.5945 | 0.0 | 0.5938 | 0.5945 | | No log | 3 | 534 | 5.2765 | 0.0312 | 42.1691 | 0.6271 | 0.4965 | 0.6278 | 0.0 | 0.6271 | 0.6264 | | No log | 4 | 712 | 3.3509 | 0.0625 | 67.5970 | 0.6740 | 0.5494 | 0.6747 | 0.0 | 0.6733 | 0.6733 | | No log | 5 | 890 | 2.9493 | 0.125 | 91.1434 | 0.7251 | 0.6998 | 0.7251 | 0.0 | 0.7259 | 0.7259 | | 0.2973 | 6 | 1068 | 2.5491 | 0.25 | 141.9162 | 0.7756 | 0.7789 | 0.7770 | 0.0 | 0.7763 | 0.7763 | | 2.0618 | 7 | 1246 | 2.4829 | 0.5 | 198.2432 | 0.7841 | 0.8192 | 0.7841 | 0.0 | 0.7841 | 0.7848 | | 1.3653 | 8.0 | 1424 | 2.7490 | 1.0 | 331.8644 | 0.7557 | 0.7698 | 0.7557 | 0.0 | 0.7557 | 0.7557 | | 0.5211 | 9.0 | 1602 | 4.4314 | 1.0 | 318.8436 | 0.7621 | 0.8016 | 0.7635 | 0.0 | 0.7621 | 0.7628 | | 0.4182 | 10.0 | 1780 | 7.0370 | 1.0 | 319.3421 | 0.7422 | 0.7869 | 0.7429 | 0.0 | 0.7422 | 0.7415 | | 0.3976 | 11.0 | 1958 | 8.8694 | 1.0 | 318.5639 | 0.7592 | 0.7855 | 0.7599 | 0.0 | 0.7592 | 0.7592 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1