--- library_name: transformers license: gemma base_model: google/gemma-2b tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: fc1c884c2af6bdedbfe7ea88893ba8e9 results: [] --- # fc1c884c2af6bdedbfe7ea88893ba8e9 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set: - Loss: 7.6709 - Data Size: 1.0 - Epoch Runtime: 28.3061 - Accuracy: 0.7783 - F1 Macro: 0.7153 - Rouge1: 0.7783 - Rouge2: 0.0 - Rougel: 0.7777 - Rougelsum: 0.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 2.7643 | 0 | 3.3412 | 0.6126 | 0.5522 | 0.6132 | 0.0 | 0.6126 | 0.6120 | | No log | 1 | 114 | 5.1579 | 0.0078 | 3.9321 | 0.6592 | 0.4637 | 0.6592 | 0.0 | 0.6586 | 0.6592 | | No log | 2 | 228 | 3.6322 | 0.0156 | 8.1285 | 0.6692 | 0.4777 | 0.6692 | 0.0 | 0.6692 | 0.6692 | | No log | 3 | 342 | 4.6142 | 0.0312 | 12.6551 | 0.6663 | 0.4032 | 0.6669 | 0.0 | 0.6660 | 0.6657 | | 0.1148 | 4 | 456 | 3.1486 | 0.0625 | 15.1708 | 0.7028 | 0.5735 | 0.7028 | 0.0 | 0.7019 | 0.7034 | | 0.1148 | 5 | 570 | 2.5100 | 0.125 | 19.7567 | 0.6686 | 0.4762 | 0.6692 | 0.0 | 0.6680 | 0.6686 | | 0.1148 | 6 | 684 | 3.2711 | 0.25 | 21.6517 | 0.4593 | 0.4429 | 0.4587 | 0.0 | 0.4593 | 0.4599 | | 0.6767 | 7 | 798 | 2.1242 | 0.5 | 28.5181 | 0.7529 | 0.7261 | 0.7524 | 0.0 | 0.7524 | 0.7535 | | 1.7658 | 8.0 | 912 | 1.9603 | 1.0 | 41.3399 | 0.7647 | 0.6914 | 0.7647 | 0.0 | 0.7642 | 0.7647 | | 1.0099 | 9.0 | 1026 | 3.0099 | 1.0 | 41.6100 | 0.7606 | 0.7253 | 0.7606 | 0.0 | 0.7606 | 0.7612 | | 1.0121 | 10.0 | 1140 | 3.4193 | 1.0 | 41.8100 | 0.7677 | 0.7235 | 0.7677 | 0.0 | 0.7671 | 0.7671 | | 0.6692 | 11.0 | 1254 | 3.5542 | 1.0 | 41.4199 | 0.7795 | 0.7605 | 0.7789 | 0.0 | 0.7789 | 0.7795 | | 0.5981 | 12.0 | 1368 | 7.6709 | 1.0 | 28.3061 | 0.7783 | 0.7153 | 0.7783 | 0.0 | 0.7777 | 0.7783 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1