Commit
·
39ab62e
1
Parent(s):
4ce81ab
Fixed bugs related to overexpressing genes (#229)
Browse files- Fixed bugs related to overexpressing genes (72c65013e2fab0e3d97757f3a0af55b09a4864c7)
Co-authored-by: David Wen <[email protected]>
geneformer/in_silico_perturber.py
CHANGED
|
@@ -151,6 +151,7 @@ def overexpress_tokens(example):
|
|
| 151 |
if example["perturb_index"] != [-100]:
|
| 152 |
example = delete_indices(example)
|
| 153 |
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]]
|
|
|
|
| 154 |
return example
|
| 155 |
|
| 156 |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
|
@@ -163,8 +164,8 @@ def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
|
| 163 |
|
| 164 |
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim):
|
| 165 |
output_batch = torch.stack([
|
| 166 |
-
remove_indices_from_emb(emb_batch[i, :, :],
|
| 167 |
-
i,
|
| 168 |
])
|
| 169 |
return output_batch
|
| 170 |
|
|
@@ -179,7 +180,7 @@ def make_perturbation_batch(example_cell,
|
|
| 179 |
range_start = 1
|
| 180 |
elif perturb_type in ["delete","inhibit"]:
|
| 181 |
range_start = 0
|
| 182 |
-
indices_to_perturb = [[i] for i in range(range_start,example_cell["length"][0])]
|
| 183 |
elif combo_lvl>0 and (anchor_token is not None):
|
| 184 |
example_input_ids = example_cell["input_ids "][0]
|
| 185 |
anchor_index = example_input_ids.index(anchor_token[0])
|
|
@@ -323,47 +324,52 @@ def quant_cos_sims(model,
|
|
| 323 |
nproc):
|
| 324 |
cos = torch.nn.CosineSimilarity(dim=2)
|
| 325 |
total_batch_length = len(perturbation_batch)
|
|
|
|
| 326 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
| 327 |
forward_batch_size = forward_batch_size-1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
if cell_states_to_model is None:
|
| 329 |
-
if perturb_group == False: # (if perturb_group is True, original_emb is filtered_input_data)
|
| 330 |
-
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group)
|
| 331 |
cos_sims = []
|
| 332 |
else:
|
| 333 |
possible_states = get_possible_states(cell_states_to_model)
|
| 334 |
-
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for
|
| 335 |
|
| 336 |
# measure length of each element in perturbation_batch
|
| 337 |
perturbation_batch = perturbation_batch.map(
|
| 338 |
measure_length, num_proc=nproc
|
| 339 |
)
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
minibatch_length_set
|
| 347 |
-
minibatch_lengths = perturbation_minibatch["length"]
|
| 348 |
-
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > model_input_size):
|
| 349 |
needs_pad_or_trunc = True
|
| 350 |
else:
|
| 351 |
needs_pad_or_trunc = False
|
| 352 |
max_len = max(minibatch_length_set)
|
| 353 |
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
def pad_or_trunc_example(example):
|
| 357 |
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"],
|
| 358 |
pad_token_id,
|
| 359 |
max_len)
|
| 360 |
return example
|
| 361 |
-
|
| 362 |
|
| 363 |
-
|
| 364 |
|
| 365 |
-
input_data_minibatch =
|
| 366 |
-
attention_mask = gen_attention_mask(
|
| 367 |
|
| 368 |
# extract embeddings for perturbation minibatch
|
| 369 |
with torch.no_grad():
|
|
@@ -371,9 +377,13 @@ def quant_cos_sims(model,
|
|
| 371 |
input_ids = input_data_minibatch.to("cuda"),
|
| 372 |
attention_mask = attention_mask
|
| 373 |
)
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
if len(indices_to_perturb)>1:
|
| 379 |
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
|
@@ -386,7 +396,8 @@ def quant_cos_sims(model,
|
|
| 386 |
overexpressed_to_remove = 1
|
| 387 |
if perturb_group == True:
|
| 388 |
overexpressed_to_remove = len(tokens_to_perturb)
|
| 389 |
-
minibatch_emb = minibatch_emb[:,overexpressed_to_remove
|
|
|
|
| 390 |
|
| 391 |
# if quantifying single perturbation in multiple different cells, pad original batch and extract embs
|
| 392 |
if perturb_group == True:
|
|
@@ -394,56 +405,50 @@ def quant_cos_sims(model,
|
|
| 394 |
# truncate to the (model input size - # tokens to overexpress) to ensure comparability
|
| 395 |
# since max input size of perturb batch will be reduced by # tokens to overexpress
|
| 396 |
original_minibatch = original_emb.select([i for i in range(i, max_range)])
|
| 397 |
-
|
| 398 |
-
original_minibatch_length_set = set(original_minibatch["length"])
|
| 399 |
-
|
| 400 |
-
indices_to_perturb_minibatch = indices_to_perturb[i:i+forward_batch_size]
|
| 401 |
-
|
| 402 |
-
if perturb_type == "overexpress":
|
| 403 |
-
new_max_len = model_input_size - len(tokens_to_perturb)
|
| 404 |
-
else:
|
| 405 |
-
new_max_len = model_input_size
|
| 406 |
-
if (len(original_minibatch_length_set) > 1) or (max(original_minibatch_length_set) > new_max_len):
|
| 407 |
-
new_max_len = min(max(original_minibatch_length_set),new_max_len)
|
| 408 |
-
def pad_or_trunc_example(example):
|
| 409 |
-
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"], pad_token_id, new_max_len)
|
| 410 |
-
return example
|
| 411 |
-
original_minibatch = original_minibatch.map(pad_or_trunc_example, num_proc=nproc)
|
| 412 |
-
original_minibatch.set_format(type="torch")
|
| 413 |
-
original_input_data_minibatch = original_minibatch["input_ids"]
|
| 414 |
-
attention_mask = gen_attention_mask(original_minibatch, new_max_len)
|
| 415 |
-
# extract embeddings for original minibatch
|
| 416 |
-
with torch.no_grad():
|
| 417 |
-
original_outputs = model(
|
| 418 |
-
input_ids = original_input_data_minibatch.to("cuda"),
|
| 419 |
-
attention_mask = attention_mask
|
| 420 |
-
)
|
| 421 |
-
del original_input_data_minibatch
|
| 422 |
-
del original_minibatch
|
| 423 |
-
del attention_mask
|
| 424 |
|
| 425 |
if len(indices_to_perturb)>1:
|
| 426 |
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant])
|
| 427 |
else:
|
| 428 |
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant]
|
| 429 |
|
| 430 |
-
#
|
| 431 |
-
|
| 432 |
-
#
|
| 433 |
-
if
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
# cosine similarity between original emb and batch items
|
| 439 |
if cell_states_to_model is None:
|
| 440 |
if perturb_group == False:
|
| 441 |
minibatch_comparison = comparison_batch[i:max_range]
|
| 442 |
elif perturb_group == True:
|
| 443 |
minibatch_comparison = original_minibatch_emb
|
| 444 |
-
|
| 445 |
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")]
|
| 446 |
elif cell_states_to_model is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
for state in possible_states:
|
| 448 |
if perturb_group == False:
|
| 449 |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_emb,
|
|
@@ -455,12 +460,14 @@ def quant_cos_sims(model,
|
|
| 455 |
minibatch_emb,
|
| 456 |
state_embs_dict[state],
|
| 457 |
perturb_group,
|
| 458 |
-
|
| 459 |
-
|
| 460 |
del outputs
|
| 461 |
del minibatch_emb
|
| 462 |
if cell_states_to_model is None:
|
| 463 |
del minibatch_comparison
|
|
|
|
|
|
|
| 464 |
torch.cuda.empty_cache()
|
| 465 |
if cell_states_to_model is None:
|
| 466 |
cos_sims_stack = torch.cat(cos_sims)
|
|
@@ -470,6 +477,7 @@ def quant_cos_sims(model,
|
|
| 470 |
cos_sims_vs_alt_dict[state] = torch.cat(cos_sims_vs_alt_dict[state])
|
| 471 |
return cos_sims_vs_alt_dict
|
| 472 |
|
|
|
|
| 473 |
# calculate cos sim shift of perturbation with respect to origin and alternative cell
|
| 474 |
def cos_sim_shift(original_emb,
|
| 475 |
minibatch_emb,
|
|
@@ -478,34 +486,32 @@ def cos_sim_shift(original_emb,
|
|
| 478 |
original_minibatch_lengths = None,
|
| 479 |
minibatch_lengths = None):
|
| 480 |
cos = torch.nn.CosineSimilarity(dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
if not perturb_group:
|
| 482 |
-
original_emb = torch.mean(original_emb,dim=
|
| 483 |
-
|
| 484 |
-
origin_v_end = torch.squeeze(cos(original_emb, end_emb)) #test
|
| 485 |
else:
|
| 486 |
-
if original_emb.size() != minibatch_emb.size():
|
| 487 |
-
logger.error(
|
| 488 |
-
f"Embeddings are not the same dimensions. " \
|
| 489 |
-
f"original_emb is {original_emb.size()}. " \
|
| 490 |
-
f"minibatch_emb is {minibatch_emb.size()}. "
|
| 491 |
-
)
|
| 492 |
-
raise
|
| 493 |
-
|
| 494 |
if original_minibatch_lengths is not None:
|
| 495 |
original_emb = mean_nonpadding_embs(original_emb, original_minibatch_lengths)
|
| 496 |
# else:
|
| 497 |
# original_emb = torch.mean(original_emb,dim=1,keepdim=True)
|
| 498 |
|
| 499 |
end_emb = torch.unsqueeze(end_emb, 1)
|
| 500 |
-
origin_v_end = cos(original_emb, end_emb)
|
| 501 |
-
origin_v_end = torch.squeeze(origin_v_end)
|
| 502 |
if minibatch_lengths is not None:
|
| 503 |
perturb_emb = mean_nonpadding_embs(minibatch_emb, minibatch_lengths)
|
| 504 |
else:
|
| 505 |
perturb_emb = torch.mean(minibatch_emb,dim=1,keepdim=True)
|
| 506 |
-
|
| 507 |
perturb_v_end = cos(perturb_emb, end_emb)
|
| 508 |
perturb_v_end = torch.squeeze(perturb_v_end)
|
|
|
|
|
|
|
| 509 |
return [(perturb_v_end-origin_v_end).to("cpu")]
|
| 510 |
|
| 511 |
def pad_list(input_ids, pad_token_id, max_len):
|
|
@@ -1152,7 +1158,11 @@ class InSilicoPerturber:
|
|
| 1152 |
j_index = torch.squeeze(j_index)
|
| 1153 |
else:
|
| 1154 |
j_index = torch.tensor([j])
|
| 1155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1156 |
|
| 1157 |
if perturbed_gene.shape[0]==1:
|
| 1158 |
perturbed_gene = perturbed_gene.item()
|
|
@@ -1183,7 +1193,11 @@ class InSilicoPerturber:
|
|
| 1183 |
j_index = torch.squeeze(j_index)
|
| 1184 |
else:
|
| 1185 |
j_index = torch.tensor([j])
|
| 1186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1187 |
|
| 1188 |
if perturbed_gene.shape[0]==1:
|
| 1189 |
perturbed_gene = perturbed_gene.item()
|
|
|
|
| 151 |
if example["perturb_index"] != [-100]:
|
| 152 |
example = delete_indices(example)
|
| 153 |
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]]
|
| 154 |
+
|
| 155 |
return example
|
| 156 |
|
| 157 |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
|
|
|
| 164 |
|
| 165 |
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim):
|
| 166 |
output_batch = torch.stack([
|
| 167 |
+
remove_indices_from_emb(emb_batch[i, :, :], idxs, gene_dim-1) for
|
| 168 |
+
i, idxs in enumerate(list_of_indices_to_remove)
|
| 169 |
])
|
| 170 |
return output_batch
|
| 171 |
|
|
|
|
| 180 |
range_start = 1
|
| 181 |
elif perturb_type in ["delete","inhibit"]:
|
| 182 |
range_start = 0
|
| 183 |
+
indices_to_perturb = [[i] for i in range(range_start, example_cell["length"][0])]
|
| 184 |
elif combo_lvl>0 and (anchor_token is not None):
|
| 185 |
example_input_ids = example_cell["input_ids "][0]
|
| 186 |
anchor_index = example_input_ids.index(anchor_token[0])
|
|
|
|
| 324 |
nproc):
|
| 325 |
cos = torch.nn.CosineSimilarity(dim=2)
|
| 326 |
total_batch_length = len(perturbation_batch)
|
| 327 |
+
|
| 328 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
| 329 |
forward_batch_size = forward_batch_size-1
|
| 330 |
+
|
| 331 |
+
if perturb_group == False:
|
| 332 |
+
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group)
|
| 333 |
+
|
| 334 |
if cell_states_to_model is None:
|
|
|
|
|
|
|
| 335 |
cos_sims = []
|
| 336 |
else:
|
| 337 |
possible_states = get_possible_states(cell_states_to_model)
|
| 338 |
+
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for _ in range(len(possible_states))]))
|
| 339 |
|
| 340 |
# measure length of each element in perturbation_batch
|
| 341 |
perturbation_batch = perturbation_batch.map(
|
| 342 |
measure_length, num_proc=nproc
|
| 343 |
)
|
| 344 |
+
|
| 345 |
+
def compute_batch_embeddings(minibatch, _max_len = None):
|
| 346 |
+
minibatch_lengths = minibatch["length"]
|
| 347 |
+
minibatch_length_set = set(minibatch_lengths)
|
| 348 |
+
max_len = model_input_size
|
| 349 |
+
|
| 350 |
+
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > max_len):
|
|
|
|
|
|
|
| 351 |
needs_pad_or_trunc = True
|
| 352 |
else:
|
| 353 |
needs_pad_or_trunc = False
|
| 354 |
max_len = max(minibatch_length_set)
|
| 355 |
|
| 356 |
+
|
| 357 |
+
if needs_pad_or_trunc == True:
|
| 358 |
+
if _max_len is None:
|
| 359 |
+
max_len = min(max(minibatch_length_set), max_len)
|
| 360 |
+
else:
|
| 361 |
+
max_len = _max_len
|
| 362 |
def pad_or_trunc_example(example):
|
| 363 |
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"],
|
| 364 |
pad_token_id,
|
| 365 |
max_len)
|
| 366 |
return example
|
| 367 |
+
minibatch = minibatch.map(pad_or_trunc_example, num_proc=nproc)
|
| 368 |
|
| 369 |
+
minibatch.set_format(type="torch")
|
| 370 |
|
| 371 |
+
input_data_minibatch = minibatch["input_ids"]
|
| 372 |
+
attention_mask = gen_attention_mask(minibatch, max_len)
|
| 373 |
|
| 374 |
# extract embeddings for perturbation minibatch
|
| 375 |
with torch.no_grad():
|
|
|
|
| 377 |
input_ids = input_data_minibatch.to("cuda"),
|
| 378 |
attention_mask = attention_mask
|
| 379 |
)
|
| 380 |
+
|
| 381 |
+
return outputs, max_len
|
| 382 |
+
|
| 383 |
+
for i in range(0, total_batch_length, forward_batch_size):
|
| 384 |
+
max_range = min(i+forward_batch_size, total_batch_length)
|
| 385 |
+
perturbation_minibatch = perturbation_batch.select([i for i in range(i, max_range)])
|
| 386 |
+
outputs, mini_max_len = compute_batch_embeddings(perturbation_minibatch)
|
| 387 |
|
| 388 |
if len(indices_to_perturb)>1:
|
| 389 |
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
|
|
|
| 396 |
overexpressed_to_remove = 1
|
| 397 |
if perturb_group == True:
|
| 398 |
overexpressed_to_remove = len(tokens_to_perturb)
|
| 399 |
+
minibatch_emb = minibatch_emb[:, overexpressed_to_remove: ,:]
|
| 400 |
+
|
| 401 |
|
| 402 |
# if quantifying single perturbation in multiple different cells, pad original batch and extract embs
|
| 403 |
if perturb_group == True:
|
|
|
|
| 405 |
# truncate to the (model input size - # tokens to overexpress) to ensure comparability
|
| 406 |
# since max input size of perturb batch will be reduced by # tokens to overexpress
|
| 407 |
original_minibatch = original_emb.select([i for i in range(i, max_range)])
|
| 408 |
+
original_outputs, orig_max_len = compute_batch_embeddings(original_minibatch, mini_max_len)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
if len(indices_to_perturb)>1:
|
| 411 |
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant])
|
| 412 |
else:
|
| 413 |
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant]
|
| 414 |
|
| 415 |
+
# if we overexpress genes that aren't already expressed,
|
| 416 |
+
# we need to remove genes to make sure the embeddings are of a consistent size
|
| 417 |
+
# get rid of the bottom n genes/padding since those will get truncated anyways
|
| 418 |
+
# multiple perturbations is more complicated because if 1 out of n perturbed genes is expressed
|
| 419 |
+
# the idxs will still not be [-100]
|
| 420 |
+
if len(tokens_to_perturb) == 1:
|
| 421 |
+
indices_to_perturb_minibatch = [idx if idx != [-100] else [orig_max_len - 1]
|
| 422 |
+
for idx in indices_to_perturb[i:max_range]]
|
| 423 |
+
else:
|
| 424 |
+
num_perturbed = len(tokens_to_perturb)
|
| 425 |
+
indices_to_perturb_minibatch = []
|
| 426 |
+
end_range = [i for i in range(orig_max_len - tokens_to_perturb, orig_max_len)]
|
| 427 |
+
for idx in indices_to_perturb[i:i+max_range]:
|
| 428 |
+
if idx == [-100]:
|
| 429 |
+
indices_to_perturb_minibatch.append(end_range)
|
| 430 |
+
elif len(idx) < len(tokens_to_perturb):
|
| 431 |
+
indices_to_perturb_minibatch.append(idx + end_range[-num_perturbed:])
|
| 432 |
+
else:
|
| 433 |
+
indices_to_perturb_minibatch.append(idx)
|
| 434 |
|
| 435 |
+
original_minibatch_emb = remove_indices_from_emb_batch(original_minibatch_emb,
|
| 436 |
+
indices_to_perturb_minibatch,
|
| 437 |
+
gene_dim=1)
|
| 438 |
+
|
| 439 |
# cosine similarity between original emb and batch items
|
| 440 |
if cell_states_to_model is None:
|
| 441 |
if perturb_group == False:
|
| 442 |
minibatch_comparison = comparison_batch[i:max_range]
|
| 443 |
elif perturb_group == True:
|
| 444 |
minibatch_comparison = original_minibatch_emb
|
|
|
|
| 445 |
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")]
|
| 446 |
elif cell_states_to_model is not None:
|
| 447 |
+
if perturb_group == False:
|
| 448 |
+
original_emb = comparison_batch[i:max_range]
|
| 449 |
+
else:
|
| 450 |
+
original_minibatch_lengths = torch.tensor(original_minibatch["length"], device="cuda")
|
| 451 |
+
minibatch_lengths = torch.tensor(perturbation_minibatch["length"], device="cuda")
|
| 452 |
for state in possible_states:
|
| 453 |
if perturb_group == False:
|
| 454 |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_emb,
|
|
|
|
| 460 |
minibatch_emb,
|
| 461 |
state_embs_dict[state],
|
| 462 |
perturb_group,
|
| 463 |
+
original_minibatch_lengths,
|
| 464 |
+
minibatch_lengths)
|
| 465 |
del outputs
|
| 466 |
del minibatch_emb
|
| 467 |
if cell_states_to_model is None:
|
| 468 |
del minibatch_comparison
|
| 469 |
+
if perturb_group == True:
|
| 470 |
+
del original_minibatch_emb
|
| 471 |
torch.cuda.empty_cache()
|
| 472 |
if cell_states_to_model is None:
|
| 473 |
cos_sims_stack = torch.cat(cos_sims)
|
|
|
|
| 477 |
cos_sims_vs_alt_dict[state] = torch.cat(cos_sims_vs_alt_dict[state])
|
| 478 |
return cos_sims_vs_alt_dict
|
| 479 |
|
| 480 |
+
|
| 481 |
# calculate cos sim shift of perturbation with respect to origin and alternative cell
|
| 482 |
def cos_sim_shift(original_emb,
|
| 483 |
minibatch_emb,
|
|
|
|
| 486 |
original_minibatch_lengths = None,
|
| 487 |
minibatch_lengths = None):
|
| 488 |
cos = torch.nn.CosineSimilarity(dim=2)
|
| 489 |
+
if original_emb.size() != minibatch_emb.size():
|
| 490 |
+
logger.error(
|
| 491 |
+
f"Embeddings are not the same dimensions. " \
|
| 492 |
+
f"original_emb is {original_emb.size()}. " \
|
| 493 |
+
f"minibatch_emb is {minibatch_emb.size()}. "
|
| 494 |
+
)
|
| 495 |
+
raise
|
| 496 |
if not perturb_group:
|
| 497 |
+
original_emb = torch.mean(original_emb,dim=1,keepdim=True)
|
| 498 |
+
origin_v_end = torch.squeeze(cos(original_emb, end_emb))
|
|
|
|
| 499 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
if original_minibatch_lengths is not None:
|
| 501 |
original_emb = mean_nonpadding_embs(original_emb, original_minibatch_lengths)
|
| 502 |
# else:
|
| 503 |
# original_emb = torch.mean(original_emb,dim=1,keepdim=True)
|
| 504 |
|
| 505 |
end_emb = torch.unsqueeze(end_emb, 1)
|
| 506 |
+
origin_v_end = torch.squeeze(cos(original_emb, end_emb))
|
|
|
|
| 507 |
if minibatch_lengths is not None:
|
| 508 |
perturb_emb = mean_nonpadding_embs(minibatch_emb, minibatch_lengths)
|
| 509 |
else:
|
| 510 |
perturb_emb = torch.mean(minibatch_emb,dim=1,keepdim=True)
|
|
|
|
| 511 |
perturb_v_end = cos(perturb_emb, end_emb)
|
| 512 |
perturb_v_end = torch.squeeze(perturb_v_end)
|
| 513 |
+
if (perturb_v_end-origin_v_end).numel() == 1:
|
| 514 |
+
return [([perturb_v_end-origin_v_end]).to("cpu")]
|
| 515 |
return [(perturb_v_end-origin_v_end).to("cpu")]
|
| 516 |
|
| 517 |
def pad_list(input_ids, pad_token_id, max_len):
|
|
|
|
| 1158 |
j_index = torch.squeeze(j_index)
|
| 1159 |
else:
|
| 1160 |
j_index = torch.tensor([j])
|
| 1161 |
+
|
| 1162 |
+
if self.perturb_type in ("overexpress", "activate"):
|
| 1163 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index + 1)
|
| 1164 |
+
else:
|
| 1165 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index)
|
| 1166 |
|
| 1167 |
if perturbed_gene.shape[0]==1:
|
| 1168 |
perturbed_gene = perturbed_gene.item()
|
|
|
|
| 1193 |
j_index = torch.squeeze(j_index)
|
| 1194 |
else:
|
| 1195 |
j_index = torch.tensor([j])
|
| 1196 |
+
|
| 1197 |
+
if self.perturb_type in ("overexpress", "activate"):
|
| 1198 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index + 1)
|
| 1199 |
+
else:
|
| 1200 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index)
|
| 1201 |
|
| 1202 |
if perturbed_gene.shape[0]==1:
|
| 1203 |
perturbed_gene = perturbed_gene.item()
|