Added anndata tokenizer and switched to Dataset.from_generator
Browse files
examples/tokenizing_scRNAseq_data.ipynb
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
{
|
| 2 |
"cells": [
|
| 3 |
{
|
|
|
|
| 4 |
"cell_type": "markdown",
|
| 5 |
"id": "a91bca46-c056-4784-8c6c-b0f5d3f33496",
|
| 6 |
"metadata": {
|
|
@@ -11,6 +12,7 @@
|
|
| 11 |
]
|
| 12 |
},
|
| 13 |
{
|
|
|
|
| 14 |
"cell_type": "markdown",
|
| 15 |
"id": "350e6252-b783-494b-9767-f087eb868a15",
|
| 16 |
"metadata": {},
|
|
@@ -44,7 +46,7 @@
|
|
| 44 |
"outputs": [],
|
| 45 |
"source": [
|
| 46 |
"tk = TranscriptomeTokenizer({\"cell_type\": \"cell_type\", \"organ_major\": \"organ_major\"}, nproc=4)\n",
|
| 47 |
-
"tk.tokenize_data(\"loom_data_directory\", \"output_directory\", \"output_prefix\")"
|
| 48 |
]
|
| 49 |
}
|
| 50 |
],
|
|
|
|
| 1 |
{
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
+
"attachments": {},
|
| 5 |
"cell_type": "markdown",
|
| 6 |
"id": "a91bca46-c056-4784-8c6c-b0f5d3f33496",
|
| 7 |
"metadata": {
|
|
|
|
| 12 |
]
|
| 13 |
},
|
| 14 |
{
|
| 15 |
+
"attachments": {},
|
| 16 |
"cell_type": "markdown",
|
| 17 |
"id": "350e6252-b783-494b-9767-f087eb868a15",
|
| 18 |
"metadata": {},
|
|
|
|
| 46 |
"outputs": [],
|
| 47 |
"source": [
|
| 48 |
"tk = TranscriptomeTokenizer({\"cell_type\": \"cell_type\", \"organ_major\": \"organ_major\"}, nproc=4)\n",
|
| 49 |
+
"tk.tokenize_data(\"loom_data_directory\", \"output_directory\", \"output_prefix\", file_format=\"loom\")"
|
| 50 |
]
|
| 51 |
}
|
| 52 |
],
|
geneformer/tokenizer.py
CHANGED
|
@@ -14,6 +14,8 @@ Usage:
|
|
| 14 |
tk.tokenize_data("loom_data_directory", "output_directory", "output_prefix")
|
| 15 |
"""
|
| 16 |
|
|
|
|
|
|
|
| 17 |
import pickle
|
| 18 |
from pathlib import Path
|
| 19 |
|
|
@@ -22,6 +24,7 @@ import logging
|
|
| 22 |
import warnings
|
| 23 |
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
|
| 24 |
|
|
|
|
| 25 |
import loompy as lp
|
| 26 |
import numpy as np
|
| 27 |
from datasets import Dataset
|
|
@@ -92,26 +95,38 @@ class TranscriptomeTokenizer:
|
|
| 92 |
# protein-coding and miRNA gene list dictionary for selecting .loom rows for tokenization
|
| 93 |
self.genelist_dict = dict(zip(self.gene_keys, [True] * len(self.gene_keys)))
|
| 94 |
|
| 95 |
-
def tokenize_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"""
|
| 97 |
Tokenize .loom files in loom_data_directory and save as tokenized .dataset in output_directory.
|
| 98 |
|
| 99 |
Parameters
|
| 100 |
----------
|
| 101 |
loom_data_directory : Path
|
| 102 |
-
Path to directory containing loom files
|
| 103 |
output_directory : Path
|
| 104 |
Path to directory where tokenized data will be saved as .dataset
|
| 105 |
output_prefix : str
|
| 106 |
Prefix for output .dataset
|
|
|
|
|
|
|
| 107 |
"""
|
| 108 |
-
tokenized_cells, cell_metadata = self.tokenize_files(
|
|
|
|
|
|
|
| 109 |
tokenized_dataset = self.create_dataset(tokenized_cells, cell_metadata)
|
| 110 |
|
| 111 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
|
| 112 |
tokenized_dataset.save_to_disk(output_path)
|
| 113 |
|
| 114 |
-
def tokenize_files(
|
|
|
|
|
|
|
| 115 |
tokenized_cells = []
|
| 116 |
if self.custom_attr_name_dict is not None:
|
| 117 |
loom_cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
|
|
@@ -119,12 +134,14 @@ class TranscriptomeTokenizer:
|
|
| 119 |
|
| 120 |
# loops through directories to tokenize .loom files
|
| 121 |
file_found = 0
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
file_found = 1
|
| 124 |
-
print(f"Tokenizing {
|
| 125 |
-
file_tokenized_cells, file_cell_metadata =
|
| 126 |
-
loom_file_path
|
| 127 |
-
)
|
| 128 |
tokenized_cells += file_tokenized_cells
|
| 129 |
if self.custom_attr_name_dict is not None:
|
| 130 |
for k in loom_cell_attr:
|
|
@@ -134,10 +151,65 @@ class TranscriptomeTokenizer:
|
|
| 134 |
|
| 135 |
if file_found == 0:
|
| 136 |
logger.error(
|
| 137 |
-
f"No .
|
| 138 |
raise
|
| 139 |
return tokenized_cells, cell_metadata
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
def tokenize_file(self, loom_file_path):
|
| 142 |
if self.custom_attr_name_dict is not None:
|
| 143 |
file_cell_metadata = {
|
|
@@ -214,7 +286,13 @@ class TranscriptomeTokenizer:
|
|
| 214 |
dataset_dict.update(cell_metadata)
|
| 215 |
|
| 216 |
# create dataset
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
# truncate dataset
|
| 220 |
def truncate(example):
|
|
|
|
| 14 |
tk.tokenize_data("loom_data_directory", "output_directory", "output_prefix")
|
| 15 |
"""
|
| 16 |
|
| 17 |
+
from __future__ import annotations
|
| 18 |
+
from typing import Literal
|
| 19 |
import pickle
|
| 20 |
from pathlib import Path
|
| 21 |
|
|
|
|
| 24 |
import warnings
|
| 25 |
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
|
| 26 |
|
| 27 |
+
import anndata as ad
|
| 28 |
import loompy as lp
|
| 29 |
import numpy as np
|
| 30 |
from datasets import Dataset
|
|
|
|
| 95 |
# protein-coding and miRNA gene list dictionary for selecting .loom rows for tokenization
|
| 96 |
self.genelist_dict = dict(zip(self.gene_keys, [True] * len(self.gene_keys)))
|
| 97 |
|
| 98 |
+
def tokenize_data(
|
| 99 |
+
self,
|
| 100 |
+
data_directory: Path | str,
|
| 101 |
+
output_directory: Path | str,
|
| 102 |
+
output_prefix: str,
|
| 103 |
+
file_format: Literal["loom", "h5ad"] = "loom",
|
| 104 |
+
):
|
| 105 |
"""
|
| 106 |
Tokenize .loom files in loom_data_directory and save as tokenized .dataset in output_directory.
|
| 107 |
|
| 108 |
Parameters
|
| 109 |
----------
|
| 110 |
loom_data_directory : Path
|
| 111 |
+
Path to directory containing loom files or anndata files
|
| 112 |
output_directory : Path
|
| 113 |
Path to directory where tokenized data will be saved as .dataset
|
| 114 |
output_prefix : str
|
| 115 |
Prefix for output .dataset
|
| 116 |
+
file_format : str
|
| 117 |
+
Format of input files. Can be "loom" or "h5ad".
|
| 118 |
"""
|
| 119 |
+
tokenized_cells, cell_metadata = self.tokenize_files(
|
| 120 |
+
Path(data_directory), file_format
|
| 121 |
+
)
|
| 122 |
tokenized_dataset = self.create_dataset(tokenized_cells, cell_metadata)
|
| 123 |
|
| 124 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
|
| 125 |
tokenized_dataset.save_to_disk(output_path)
|
| 126 |
|
| 127 |
+
def tokenize_files(
|
| 128 |
+
self, data_directory, file_format: Literal["loom", "h5ad"] = "loom"
|
| 129 |
+
):
|
| 130 |
tokenized_cells = []
|
| 131 |
if self.custom_attr_name_dict is not None:
|
| 132 |
loom_cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
|
|
|
|
| 134 |
|
| 135 |
# loops through directories to tokenize .loom files
|
| 136 |
file_found = 0
|
| 137 |
+
# loops through directories to tokenize .loom or .h5ad files
|
| 138 |
+
tokenize_file_fn = (
|
| 139 |
+
self.tokenize_file if file_format == "loom" else self.tokenize_anndata
|
| 140 |
+
)
|
| 141 |
+
for file_path in data_directory.glob("*.{}".format(file_format)):
|
| 142 |
file_found = 1
|
| 143 |
+
print(f"Tokenizing {file_path}")
|
| 144 |
+
file_tokenized_cells, file_cell_metadata = tokenize_file_fn(file_path)
|
|
|
|
|
|
|
| 145 |
tokenized_cells += file_tokenized_cells
|
| 146 |
if self.custom_attr_name_dict is not None:
|
| 147 |
for k in loom_cell_attr:
|
|
|
|
| 151 |
|
| 152 |
if file_found == 0:
|
| 153 |
logger.error(
|
| 154 |
+
f"No .{file_format} files found in directory {data_directory}.")
|
| 155 |
raise
|
| 156 |
return tokenized_cells, cell_metadata
|
| 157 |
|
| 158 |
+
def tokenize_anndata(self, adata_file_path):
|
| 159 |
+
adata = ad.read(adata_file_path)
|
| 160 |
+
file_cell_metadata = {
|
| 161 |
+
attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
coding_miRNA_loc = np.where(
|
| 165 |
+
[self.genelist_dict.get(i, False) for i in adata.var["ensembl_id"]]
|
| 166 |
+
)[0]
|
| 167 |
+
norm_factor_vector = np.array(
|
| 168 |
+
[
|
| 169 |
+
self.gene_median_dict[i]
|
| 170 |
+
for i in adata.var["ensembl_id"][coding_miRNA_loc]
|
| 171 |
+
]
|
| 172 |
+
)
|
| 173 |
+
coding_miRNA_ids = adata.var["ensembl_id"][coding_miRNA_loc]
|
| 174 |
+
coding_miRNA_tokens = np.array(
|
| 175 |
+
[self.gene_token_dict[i] for i in coding_miRNA_ids]
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
adata.obs["filter_pass"]
|
| 180 |
+
except KeyError:
|
| 181 |
+
var_exists = False
|
| 182 |
+
else:
|
| 183 |
+
var_exists = True
|
| 184 |
+
|
| 185 |
+
if var_exists is True:
|
| 186 |
+
filter_pass_loc = np.where(
|
| 187 |
+
[True if i == 1 else False for i in adata.obs["filter_pass"]]
|
| 188 |
+
)[0]
|
| 189 |
+
elif var_exists is False:
|
| 190 |
+
print(
|
| 191 |
+
f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
|
| 192 |
+
)
|
| 193 |
+
filter_pass_loc = np.array([i for i in range(adata.shape[0])])
|
| 194 |
+
|
| 195 |
+
tokenized_cells = []
|
| 196 |
+
adata_filter = adata[
|
| 197 |
+
filter_pass_loc, coding_miRNA_loc # filter cells and genes
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
X_norm = (adata_filter.X / adata.X.sum(1) * 10_000 / norm_factor_vector).tocsr()
|
| 201 |
+
|
| 202 |
+
tokenized_cells += [
|
| 203 |
+
tokenize_cell(X_norm[i, ...].A.flatten(), coding_miRNA_tokens)
|
| 204 |
+
for i in range(X_norm.shape[0])
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
# add custom attributes for subview to dict
|
| 208 |
+
for k in file_cell_metadata.keys():
|
| 209 |
+
file_cell_metadata[k] += adata_filter.obs[k].tolist()
|
| 210 |
+
|
| 211 |
+
return tokenized_cells, file_cell_metadata
|
| 212 |
+
|
| 213 |
def tokenize_file(self, loom_file_path):
|
| 214 |
if self.custom_attr_name_dict is not None:
|
| 215 |
file_cell_metadata = {
|
|
|
|
| 286 |
dataset_dict.update(cell_metadata)
|
| 287 |
|
| 288 |
# create dataset
|
| 289 |
+
def dict_generator():
|
| 290 |
+
for i in range(len(tokenized_cells)):
|
| 291 |
+
yield {
|
| 292 |
+
'input_ids': dataset_dict['input_ids'][i],
|
| 293 |
+
'cell_type': dataset_dict['cell_type'][i]
|
| 294 |
+
}
|
| 295 |
+
output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc)
|
| 296 |
|
| 297 |
# truncate dataset
|
| 298 |
def truncate(example):
|