Upload folder using huggingface_hub
Browse files- .gitignore +3 -1
- handler.py +100 -0
- requiremnts.txt +3 -1
.gitignore
CHANGED
|
@@ -208,4 +208,6 @@ __marimo__/
|
|
| 208 |
|
| 209 |
*.jpg`
|
| 210 |
runs/
|
| 211 |
-
data/
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
*.jpg`
|
| 210 |
runs/
|
| 211 |
+
data/
|
| 212 |
+
|
| 213 |
+
*yolov11-segmentation_earth-worm/
|
handler.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# handler.py
|
| 2 |
+
# Hugging Face Inference Endpoints - Custom Handler for Ultralytics YOLOv11-seg
|
| 3 |
+
# Returns: {"instances":[{"label":str,"score":float,"polygon":[[x,y],...]},...],
|
| 4 |
+
# "width": int, "height": int}
|
| 5 |
+
|
| 6 |
+
import io
|
| 7 |
+
import base64
|
| 8 |
+
from typing import Any, Dict, List, Union
|
| 9 |
+
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
from ultralytics import YOLO
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class EndpointHandler:
|
| 16 |
+
def __init__(self, path: str = "."):
|
| 17 |
+
"""
|
| 18 |
+
Called once on container startup.
|
| 19 |
+
`path` points to the repo root mounted in the endpoint.
|
| 20 |
+
"""
|
| 21 |
+
# Resolve weights using Hub API to get the raw binary (handles LFS/private).
|
| 22 |
+
self.repo_id = "dashingzombie/yolov11-segmentation_earth-worm"
|
| 23 |
+
self.filename = "best.pt" # change if you prefer last.pt
|
| 24 |
+
|
| 25 |
+
weights_path = hf_hub_download(
|
| 26 |
+
repo_id=self.repo_id,
|
| 27 |
+
filename=self.filename,
|
| 28 |
+
repo_type="model"
|
| 29 |
+
)
|
| 30 |
+
self.model = YOLO(weights_path)
|
| 31 |
+
|
| 32 |
+
# If class names were not baked into the checkpoint, you can force them:
|
| 33 |
+
if not getattr(self.model, "names", None):
|
| 34 |
+
self.model.names = {0: "body_mask"} # single-class fallback
|
| 35 |
+
|
| 36 |
+
def _to_image(self, payload: Dict[str, Any]) -> Image.Image:
|
| 37 |
+
"""
|
| 38 |
+
Accepts either:
|
| 39 |
+
- {"inputs": {"image": <base64-string>}} (Serverless-style)
|
| 40 |
+
- {"inputs": <base64-string>}
|
| 41 |
+
- {"image_bytes": <raw-bytes>} (Toolkit raw)
|
| 42 |
+
"""
|
| 43 |
+
if "image_bytes" in payload:
|
| 44 |
+
return Image.open(io.BytesIO(payload["image_bytes"])).convert("RGB")
|
| 45 |
+
|
| 46 |
+
inputs = payload.get("inputs", payload.get("instances", None))
|
| 47 |
+
if isinstance(inputs, dict):
|
| 48 |
+
img_b64 = inputs.get("image") or inputs.get("img") or inputs.get("data")
|
| 49 |
+
else:
|
| 50 |
+
img_b64 = inputs
|
| 51 |
+
|
| 52 |
+
if isinstance(img_b64, str):
|
| 53 |
+
# strip possible 'data:image/jpeg;base64,' prefix
|
| 54 |
+
if "," in img_b64:
|
| 55 |
+
img_b64 = img_b64.split(",", 1)[1]
|
| 56 |
+
data = base64.b64decode(img_b64)
|
| 57 |
+
return Image.open(io.BytesIO(data)).convert("RGB")
|
| 58 |
+
|
| 59 |
+
raise ValueError("No image provided. Expected 'image_bytes' or base64 string under 'inputs'.")
|
| 60 |
+
|
| 61 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 62 |
+
"""
|
| 63 |
+
Runs per request. `data` is the incoming JSON/body parsed by the Toolkit.
|
| 64 |
+
Returns JSON-serializable dict.
|
| 65 |
+
"""
|
| 66 |
+
image = self._to_image(data)
|
| 67 |
+
W, H = image.size
|
| 68 |
+
|
| 69 |
+
# confidence threshold can be overridden via params
|
| 70 |
+
params = data.get("parameters", {}) or data.get("options", {})
|
| 71 |
+
conf = float(params.get("conf", 0.25))
|
| 72 |
+
|
| 73 |
+
results = self.model(image, conf=conf, verbose=False)[0]
|
| 74 |
+
names = results.names
|
| 75 |
+
|
| 76 |
+
instances: List[Dict[str, Any]] = []
|
| 77 |
+
if results.masks is not None:
|
| 78 |
+
# polygons per instance: results.masks.xy (list of Nx2 arrays)
|
| 79 |
+
for i, poly in enumerate(results.masks.xy):
|
| 80 |
+
cls_id = int(results.boxes.cls[i].item())
|
| 81 |
+
score = float(results.boxes.conf[i].item())
|
| 82 |
+
polygon = [[float(x), float(y)] for x, y in poly]
|
| 83 |
+
instances.append({
|
| 84 |
+
"label": names[cls_id],
|
| 85 |
+
"score": score,
|
| 86 |
+
"polygon": polygon
|
| 87 |
+
})
|
| 88 |
+
else:
|
| 89 |
+
# Fallback to boxes if masks missing (rare for -seg)
|
| 90 |
+
for i, b in enumerate(results.boxes.xyxy.tolist()):
|
| 91 |
+
x1, y1, x2, y2 = [float(v) for v in b]
|
| 92 |
+
cls_id = int(results.boxes.cls[i].item())
|
| 93 |
+
score = float(results.boxes.conf[i].item())
|
| 94 |
+
instances.append({
|
| 95 |
+
"label": names[cls_id],
|
| 96 |
+
"score": score,
|
| 97 |
+
"bbox_xyxy": [x1, y1, x2, y2]
|
| 98 |
+
})
|
| 99 |
+
|
| 100 |
+
return {"instances": instances, "width": W, "height": H}
|
requiremnts.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
ultralytics>=8.3
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
-
pillow
|
|
|
|
|
|
|
|
|
| 1 |
ultralytics>=8.3
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
+
pillow
|
| 5 |
+
huggingface_hub
|
| 6 |
+
fastapi
|