Commit
·
c174f79
1
Parent(s):
486b7b4
Update dataset card and add dataset builder
Browse files
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
license: gpl-3.0
|
| 5 |
+
tags:
|
| 6 |
+
- vision
|
| 7 |
+
- image-segmentation
|
| 8 |
+
- instance-segmentation
|
| 9 |
+
- object-detection
|
| 10 |
+
- optical-flow
|
| 11 |
+
- depth
|
| 12 |
+
- synthetic
|
| 13 |
+
- sim-to-real
|
| 14 |
+
annotations_creators:
|
| 15 |
+
- machine-generated
|
| 16 |
+
pretty_name: SMVB Dataset
|
| 17 |
+
size_categories:
|
| 18 |
+
- 1K<n<10K
|
| 19 |
+
task_categories:
|
| 20 |
+
- object-detection
|
| 21 |
+
- zero-shot-object-detection
|
| 22 |
+
- image-segmentation
|
| 23 |
+
- depth-estimation
|
| 24 |
+
- video-classification
|
| 25 |
+
- other
|
| 26 |
+
task_ids:
|
| 27 |
+
- instance-segmentation
|
| 28 |
+
- semantic-segmentation
|
| 29 |
---
|
| 30 |
+
|
| 31 |
+
# Synthetic Multimodal Video Benchmark (SMVB)
|
| 32 |
+
|
| 33 |
+
A dataset consisting of synthetic images from distinct synthetic scenes, annotated with object/instance/semantic segmentation masks, depth data, surface normal information and optical for testing and benchmarking model performance for multi-task/multi-objective learning.
|
| 34 |
+
|
| 35 |
+
### Supported Tasks and Leaderboards
|
| 36 |
+
|
| 37 |
+
The dataset supports tasks such as semantic segmentation, instance segmentation, object detection, image classification, depth, surface normal, and optical flow estimation, and video object segmentation.
|
| 38 |
+
|
| 39 |
+
## Dataset Structure
|
| 40 |
+
|
| 41 |
+
### Data Instances
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
### Data Fields
|
| 45 |
+
|
| 46 |
+
### Data Splits
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
## Dataset Creation
|
| 50 |
+
|
| 51 |
+
### Curation Rationale
|
| 52 |
+
|
| 53 |
+
### Source Data
|
| 54 |
+
|
| 55 |
+
### Citation Information
|
| 56 |
+
|
| 57 |
+
```bibtex
|
| 58 |
+
@INPROCEEDINGS{karoly2024synthetic,
|
| 59 |
+
author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
|
| 60 |
+
booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)},
|
| 61 |
+
title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation},
|
| 62 |
+
year={2024},
|
| 63 |
+
volume={},
|
| 64 |
+
number={},
|
| 65 |
+
pages={},
|
| 66 |
+
doi={}}
|
| 67 |
+
```
|
SMVB.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# This file is part of the SMVB distribution (https://huggingface.co/datasets/ABC-iRobotics/SMVB).
|
| 3 |
+
# Copyright (c) 2023 ABC-iRobotics.
|
| 4 |
+
#
|
| 5 |
+
# This program is free software: you can redistribute it and/or modify
|
| 6 |
+
# it under the terms of the GNU General Public License as published by
|
| 7 |
+
# the Free Software Foundation, version 3.
|
| 8 |
+
#
|
| 9 |
+
# This program is distributed in the hope that it will be useful, but
|
| 10 |
+
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 11 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 12 |
+
# General Public License for more details.
|
| 13 |
+
#
|
| 14 |
+
# You should have received a copy of the GNU General Public License
|
| 15 |
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 16 |
+
#
|
| 17 |
+
"""SMVB dataset"""
|
| 18 |
+
|
| 19 |
+
import sys
|
| 20 |
+
import pathlib
|
| 21 |
+
if sys.version_info < (3, 9):
|
| 22 |
+
from typing import Sequence, Generator, Tuple
|
| 23 |
+
else:
|
| 24 |
+
from collections.abc import Sequence, Generator
|
| 25 |
+
Tuple = tuple
|
| 26 |
+
|
| 27 |
+
from typing import Optional, IO
|
| 28 |
+
|
| 29 |
+
import datasets
|
| 30 |
+
import itertools
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ---- Constants ----
|
| 34 |
+
|
| 35 |
+
_CITATION = """\
|
| 36 |
+
@INPROCEEDINGS{karoly2024synthetic,
|
| 37 |
+
author={Károly, Artúr I. and Nádas, Imre and Galambos, Péter},
|
| 38 |
+
booktitle={2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)},
|
| 39 |
+
title={Synthetic Multimodal Video Benchmark (SMVB): Utilizing Blender for rich dataset generation},
|
| 40 |
+
year={2024},
|
| 41 |
+
volume={},
|
| 42 |
+
number={},
|
| 43 |
+
pages={},
|
| 44 |
+
doi={}}
|
| 45 |
+
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
_DESCRIPTION = """\
|
| 49 |
+
Amultimodal video benchmark for evaluating models in multi-task learning scenarios.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
_HOMEPAGE = "https://huggingface.co/ABC-iRobotics/SMVB"
|
| 53 |
+
|
| 54 |
+
_LICENSE = "GNU General Public License v3.0"
|
| 55 |
+
|
| 56 |
+
_BASE_URL = "https://huggingface.co/datasets/ABC-iRobotics/SMVB/resolve/main/data"
|
| 57 |
+
|
| 58 |
+
_VERSION = '1.0.0'
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# ---- SMVB dataset Configs ----
|
| 62 |
+
|
| 63 |
+
class SMVBDatasetConfig(datasets.BuilderConfig):
|
| 64 |
+
"""BuilderConfig for SMVB dataset."""
|
| 65 |
+
|
| 66 |
+
def __init__(self, name: str, data_urls: Sequence[str], version: Optional[str] = None, **kwargs):
|
| 67 |
+
super(SMVBDatasetConfig, self).__init__(version=datasets.Version(version), name=name, **kwargs)
|
| 68 |
+
self._data_urls = data_urls
|
| 69 |
+
|
| 70 |
+
@property
|
| 71 |
+
def features(self):
|
| 72 |
+
return datasets.Features(
|
| 73 |
+
{
|
| 74 |
+
"image": datasets.Image(),
|
| 75 |
+
"mask": datasets.Image(),
|
| 76 |
+
"depth": datasets.Sequence(datasets.Value("float32")),
|
| 77 |
+
"flow": datasets.Sequence(datasets.Value("float32")),
|
| 78 |
+
"normal": datasets.Sequence(datasets.Value("float32"))
|
| 79 |
+
}
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def supervised_keys(self):
|
| 84 |
+
return ("image", "mask", "depth", "flow", "normal")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# ---- SMVB dataset Loader ----
|
| 89 |
+
|
| 90 |
+
class SMVBDataset(datasets.GeneratorBasedBuilder):
|
| 91 |
+
"""SMVB dataset."""
|
| 92 |
+
|
| 93 |
+
BUILDER_CONFIG_CLASS = SMVBDatasetConfig
|
| 94 |
+
BUILDER_CONFIGS = [
|
| 95 |
+
SMVBDatasetConfig(
|
| 96 |
+
name = "all",
|
| 97 |
+
description = "Photorealistic synthetic images",
|
| 98 |
+
data_urls = [_BASE_URL],
|
| 99 |
+
version = _VERSION
|
| 100 |
+
),
|
| 101 |
+
]
|
| 102 |
+
DEFAULT_WRITER_BATCH_SIZE = 10
|
| 103 |
+
|
| 104 |
+
def _info(self):
|
| 105 |
+
return datasets.DatasetInfo(
|
| 106 |
+
description=_DESCRIPTION,
|
| 107 |
+
features=self.config.features,
|
| 108 |
+
supervised_keys=self.config.supervised_keys,
|
| 109 |
+
homepage=_HOMEPAGE,
|
| 110 |
+
license=_LICENSE,
|
| 111 |
+
citation=_CITATION,
|
| 112 |
+
version=self.config.version,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def _split_generators(self, dl_manager):
|
| 116 |
+
local_data_paths = dl_manager.download(self.config._data_urls)
|
| 117 |
+
archives = itertools.chain.from_iterable([pathlib.Path(path).rglob('*.tar.gz') for path in local_data_paths])
|
| 118 |
+
local_data_gen = itertools.chain.from_iterable([dl_manager.iter_archive(path) for path in archives])
|
| 119 |
+
|
| 120 |
+
return [
|
| 121 |
+
datasets.SplitGenerator(
|
| 122 |
+
name=datasets.Split.TRAIN,
|
| 123 |
+
gen_kwargs={
|
| 124 |
+
"data": local_data_gen
|
| 125 |
+
}
|
| 126 |
+
)
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
def _generate_examples(
|
| 130 |
+
self,
|
| 131 |
+
data: Generator[Tuple[str,IO], None, None]
|
| 132 |
+
):
|
| 133 |
+
file_infos = []
|
| 134 |
+
keys = self.config.supervised_keys
|
| 135 |
+
|
| 136 |
+
for i, info in enumerate(data):
|
| 137 |
+
if file_infos and i%len(keys) == 0:
|
| 138 |
+
yield (i//len(keys))-1, {k:{'path':d[0],'bytes':d[1].read()} for k,d in zip(keys,file_infos)}
|
| 139 |
+
file_infos = []
|
| 140 |
+
file_infos.append(info)
|