--- license: cc-by-4.0 task_categories: - image-segmentation tags: - medical - CT - abdominal - multi-organ - segmentation size_categories: - n<1K configs: - config_name: default data_files: - split: train path: train.jsonl - split: validation path: validation.jsonl --- # AMOS22 CT Dataset ## Dataset Description This is the **CT** portion of the AMOS22 (A large-scale abdominal multi-organ benchmark for versatile medical image segmentation) dataset. The AMOS22 dataset contains abdominal CT scans with dense segmentation annotations for 15 organs. ### Dataset Structure ``` dict_keys(['train', 'valid']) splits: train/ ├── imagesTr/ # CT scan images in NIfTI format (.nii.gz) └── labelsTr/ # Segmentation masks in NIfTI format (.nii.gz) valid/ ├── imagesVa/ # CT scan images in NIfTI format (.nii.gz) └── labelsVa/ # Segmentation masks in NIfTI format (.nii.gz) ``` ### Labels The dataset includes segmentation masks for 15 abdominal organs: - Spleen - Right Kidney & Left Kidney - Gallbladder - Esophagus - Liver - Stomach - Aorta - Inferior Vena Cava (IVC) - Pancreas - Right Adrenal Gland & Left Adrenal Gland - Duodenum - Urinary Bladder ### Data Format - **Modality**: CT - **Images**: NIfTI format (.nii.gz) - **Masks**: NIfTI format (.nii.gz) ### JSONL Format Each line in the JSONL file contains: ```json { "image": "path/to/image.nii.gz", "mask": "path/to/mask.nii.gz", "label": ["organ1", "organ2", ...], "modality": "CT", "dataset": "AMOS22_CT", "official_split": "train" or "valid", "patient_id": "patient_id" } ``` ## Usage ```python from datasets import load_dataset # Load the dataset ds = load_dataset("Angelou0516/amos22-ct-dataset") # Access train and validation splits train_ds = ds['train'] val_ds = ds['valid'] ``` ## Citation If you use this dataset, please cite the AMOS22 challenge: ``` @article{ji2022amos, title={AMOS: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation}, author={Ji, Yuanfeng and Bai, Haotian and Yang, Jie and Ge, Chongjian and Zhu, Ye and Zhang, Ruimao and Li, Zhen and Zhang, Lingyan and Ma, Wanling and Wan, Xiang and others}, journal={arXiv preprint arXiv:2206.08023}, year={2022} } ``` ## License CC-BY-4.0 ## Dataset Homepage https://amos22.grand-challenge.org/