Datasets:
ArXiv:
License:
File size: 10,238 Bytes
38ad8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Copyright (c) 2021 The President and Fellows of Harvard College
# Copyright (c) 2025 The NequIP Developers
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
# SPDX-License-Identifier: MIT
#
# This file has been modified by ByteDance Ltd. and/or its affiliates on 2025-09-01.
#
# Original file was released under MIT, with the full license text
# available at https://github.com/mir-group/nequip/blob/main/LICENSE.
#
# This modified file is released under the same license.
import warnings
from typing import Sequence, Optional, Callable, Any
import math
import torch
import torch.nn as nn
from e3nn import o3
from e3nn.util.jit import compile_mode
from nequip.nn import GraphModuleMixin
from nequip.nn.utils import with_edge_vectors_
from nequip.data import AtomicDataDict
from nequip.nn import (
SequentialGraphNetwork,
ConvNetLayer,
ApplyFactor,
)
from nequip.nn.embedding import (
EdgeLengthNormalizer,
BesselEdgeLengthEncoding,
PolynomialCutoff,
NodeTypeEmbed,
)
from modules import AuxdensityHeadForNequip
@compile_mode("script")
class SphericalHarmonicEdgeAttrs(GraphModuleMixin, torch.nn.Module):
"""Construct edge attrs as spherical harmonic projections of edge vectors.
Parameters follow ``e3nn.o3.spherical_harmonics``.
Args:
irreps_edge_sh (int, str, or o3.Irreps): if int, will be treated as lmax for o3.Irreps.spherical_harmonics(lmax)
edge_sh_normalization (str): the normalization scheme to use
edge_sh_normalize (bool, default: True): whether to normalize the spherical harmonics
out_field (str, default: AtomicDataDict.EDGE_ATTRS_KEY: data/irreps field
"""
out_field: str
def __init__(
self,
irreps_edge_sh: int | str | o3.Irreps,
component_order: str = 'e3nn',
edge_sh_normalization: str = "component",
edge_sh_normalize: bool = True,
irreps_in=None,
out_field: str = AtomicDataDict.EDGE_ATTRS_KEY,
):
super().__init__()
self.out_field = out_field
if isinstance(irreps_edge_sh, int):
self.irreps_edge_sh = o3.Irreps.spherical_harmonics(irreps_edge_sh)
else:
self.irreps_edge_sh = o3.Irreps(irreps_edge_sh)
self._init_irreps(
irreps_in=irreps_in,
irreps_out={out_field: self.irreps_edge_sh},
)
self.sh = o3.SphericalHarmonics(
self.irreps_edge_sh, edge_sh_normalize, edge_sh_normalization
)
# i.e. `model_dtype`
self._output_dtype = torch.get_default_dtype()
assert component_order in ['e3nn', 'std'], "component_order must be 'e3nn' or 'std'"
self.component_order = component_order
def forward(self, data: AtomicDataDict.Type) -> AtomicDataDict.Type:
data = with_edge_vectors_(data, with_lengths=False)
edge_vec = data[AtomicDataDict.EDGE_VECTORS_KEY]
if self.component_order == 'std':
edge_vec = edge_vec[:, [1, 2, 0]]
edge_sh = self.sh(edge_vec)
data[self.out_field] = edge_sh.to(self._output_dtype)
return data
class NequipArch(nn.Module):
def __init__(
self,
r_max: float,
type_names: Sequence[str],
# convnet params
radial_mlp_depth: Sequence[int],
radial_mlp_width: Sequence[int],
feature_irreps_hidden: Sequence[str | o3.Irreps],
# irreps and dims
irreps_edge_sh: int | str | o3.Irreps,
type_embed_num_features: int,
# edge length encoding
per_edge_type_cutoff: Optional[dict[str, float | dict[str, float]]] = None,
num_bessels: int = 8,
bessel_trainable: bool = False,
polynomial_cutoff_p: int = 6,
# edge sum normalization
avg_num_neighbors: Optional[float] = None,
# == things that generally shouldn't be changed ==
# convnet
convnet_resnet: bool = False,
convnet_nonlinearity_type: str = "gate",
convnet_nonlinearity_scalars: dict[int, Callable] = {"e": "silu", "o": "tanh"},
convnet_nonlinearity_gates: dict[int, Callable] = {"e": "silu", "o": "tanh"},
task_head_specs: dict[str, Any] = {},
auxbasis: str = "def2-universal-jfit",
):
super().__init__()
self.type_names = type_names
# === sanity checks and warnings ===
assert all(tn.isalnum() for tn in type_names), (
"`type_names` must contain only alphanumeric characters"
)
# require every convnet layer to be specified explicitly in a list
# infer num_layers from the list size
assert (
len(radial_mlp_depth) == len(radial_mlp_width) == len(feature_irreps_hidden)
), (
f"radial_mlp_depth: {radial_mlp_depth}, radial_mlp_width: {radial_mlp_width}, feature_irreps_hidden: {feature_irreps_hidden} should all have the same length"
)
num_layers = len(radial_mlp_depth)
if avg_num_neighbors is None:
warnings.warn(
"Found `avg_num_neighbors=None` -- it is recommended to set `avg_num_neighbors` for normalization and better numerics during training."
)
# === encode and embed features ===
# == edge tensor embedding ==
spharm = SphericalHarmonicEdgeAttrs(
irreps_edge_sh=irreps_edge_sh,
component_order="std",
)
# == edge scalar embedding ==
edge_norm = EdgeLengthNormalizer(
r_max=r_max,
type_names=type_names,
per_edge_type_cutoff=per_edge_type_cutoff,
irreps_in=spharm.irreps_out,
)
bessel_encode = BesselEdgeLengthEncoding(
num_bessels=num_bessels,
trainable=bessel_trainable,
cutoff=PolynomialCutoff(polynomial_cutoff_p),
edge_invariant_field=AtomicDataDict.EDGE_EMBEDDING_KEY,
irreps_in=edge_norm.irreps_out,
)
# for backwards compatibility of NequIP's bessel encoding
factor = ApplyFactor(
in_field=AtomicDataDict.EDGE_EMBEDDING_KEY,
factor=(2 * math.pi) / (r_max * r_max),
irreps_in=bessel_encode.irreps_out,
)
# == node scalar embedding ==
type_embed = NodeTypeEmbed(
type_names=type_names,
num_features=type_embed_num_features,
irreps_in=factor.irreps_out,
)
modules = {
"spharm": spharm,
"edge_norm": edge_norm,
"bessel_encode": bessel_encode,
"factor": factor,
"type_embed": type_embed,
}
prev_irreps_out = type_embed.irreps_out
# === convnet layers ===
for layer_i in range(num_layers):
current_convnet = ConvNetLayer(
irreps_in=prev_irreps_out,
feature_irreps_hidden=feature_irreps_hidden[layer_i],
convolution_kwargs={
"radial_mlp_depth": radial_mlp_depth[layer_i],
"radial_mlp_width": radial_mlp_width[layer_i],
"avg_num_neighbors": avg_num_neighbors,
# to ensure isolated atom limit
"use_sc": layer_i != 0,
},
resnet=(layer_i != 0) and convnet_resnet,
nonlinearity_type=convnet_nonlinearity_type,
nonlinearity_scalars=convnet_nonlinearity_scalars,
nonlinearity_gates=convnet_nonlinearity_gates,
)
prev_irreps_out = current_convnet.irreps_out
modules.update({f"layer{layer_i}_convnet": current_convnet})
# === assemble in SequentialGraphNetwork ===
self.backbone = SequentialGraphNetwork(modules)
# === readout ===
self.backbone_irreps_out = prev_irreps_out
self.task_head = SequentialGraphNetwork(
{
"auxdensity_atom_readout": AuxdensityHeadForNequip(
type_names=self.type_names,
auxbasis=auxbasis,
field=AtomicDataDict.NODE_FEATURES_KEY,
out_field="output:auxdensity",
biases=True,
irreps_in=self.backbone_irreps_out,
),
}
)
def convert_inputs(self, inputs):
ret = inputs.copy()
ret.update(
{
AtomicDataDict.ATOM_TYPE_KEY: inputs["z"],
AtomicDataDict.POSITIONS_KEY: inputs["pos"],
AtomicDataDict.EDGE_INDEX_KEY: inputs["edge_index"],
}
)
return ret
def forward(self, data):
data = self.convert_inputs(data)
data = self.backbone(data)
data = self.task_head(data)
return data
def nequip_simple_builder(
num_layers: int = 4,
l_max: int = 1,
parity: bool = True,
num_features: int = 32,
radial_mlp_depth: int = 2,
radial_mlp_width: int = 64,
**kwargs,
) -> nn.Module:
irreps_edge_sh = repr(
o3.Irreps.spherical_harmonics(lmax=l_max, p=-1 if parity else 1)
)
feature_irreps_hidden = repr(
o3.Irreps(
[
(num_features, (l, p))
for p in ((1, -1) if parity else (1,))
for l in range(l_max + 1)
]
)
)
feature_irreps_hidden_list = [feature_irreps_hidden] * (num_layers - 1)
radial_mlp_depth_list = [radial_mlp_depth] * num_layers
radial_mlp_width_list = [radial_mlp_width] * num_layers
feature_irreps_hidden_list += [feature_irreps_hidden]
model = NequipArch(
irreps_edge_sh=irreps_edge_sh,
type_embed_num_features=num_features,
feature_irreps_hidden=feature_irreps_hidden_list,
radial_mlp_depth=radial_mlp_depth_list,
radial_mlp_width=radial_mlp_width_list,
**kwargs,
)
return model
if __name__ == "__main__":
model = nequip_simple_builder(r_max=5.0, type_names=["H", "C", "N", "O", "F", "P", "S"])
from dataset import SCFBenchDataset
dataset = SCFBenchDataset("dataset/main", parts_to_load=["base", "auxdensity.denfit"])
print(model(dataset[0])['output:auxdensity'])
|