Datasets:
ArXiv:
License:
| # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import torch | |
| import torch.nn as nn | |
| from e3nn import o3 | |
| from nequip.data import AtomicDataDict | |
| from nequip.nn import GraphModuleMixin | |
| from gto import GTOBasis | |
| class AuxdensityHead(nn.Module): | |
| def __init__( | |
| self, | |
| irreps_in: str | o3.Irreps, | |
| type_names: list[str], | |
| biases: bool = False, | |
| auxbasis: str = "def2-universal-jfit", | |
| ): | |
| super().__init__() | |
| self.auxbasis = GTOBasis.from_basis_name(auxbasis, elements=type_names) | |
| self.species_list = list(self.auxbasis.per_element_irreps.keys()) | |
| self.per_species_modules = nn.ModuleDict( | |
| { | |
| species: o3.Linear( | |
| irreps_in=irreps_in, irreps_out=irreps_out, biases=biases | |
| ) | |
| for species, irreps_out in self.auxbasis.per_element_irreps.items() | |
| } | |
| ) | |
| def forward( | |
| self, atom_features: torch.Tensor, species_indices: dict[str, torch.Tensor] | |
| ): | |
| outputs = {} | |
| for species in self.species_list: | |
| outputs[species] = self.per_species_modules[species]( | |
| atom_features[species_indices[species]] | |
| ) | |
| return outputs | |
| class AuxdensityHeadForNequip(GraphModuleMixin, torch.nn.Module): | |
| def __init__( | |
| self, | |
| type_names: list[str], | |
| auxbasis: str = "def2-universal-jfit", | |
| field: str = AtomicDataDict.NODE_FEATURES_KEY, | |
| out_field: str | None = None, | |
| biases: bool = True, | |
| irreps_in: str | o3.Irreps = None, | |
| ): | |
| super().__init__() | |
| self.field = field | |
| out_field = out_field if out_field is not None else field | |
| self.out_field = out_field | |
| self._init_irreps( | |
| irreps_in=irreps_in, | |
| required_irreps_in=[field], | |
| # we do not init irreps_out here because this module should be the final layer | |
| ) | |
| self.layer = AuxdensityHead( | |
| irreps_in=irreps_in[field], | |
| type_names=type_names, | |
| auxbasis=auxbasis, | |
| biases=biases, | |
| ) | |
| def forward(self, data): | |
| data[self.out_field] = self.layer(data[self.field], data["species_indices"]) | |
| return data | |