# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates # SPDX-License-Identifier: Apache-2.0 from functools import lru_cache import numpy as np import pyscf from pyscf.data.elements import ( NUC as element_to_atomic_number, ELEMENTS as atomic_number_to_element, ) import torch from e3nn import o3 def build_irreps_from_mol(mol): parity = lambda l: "e" if l % 2 == 0 else "o" irreps = o3.Irreps( "+".join(f"{l}{parity(l)}" for l in map(mol.bas_angular, range(mol.nbas))) ) return irreps def ref_etb(aobasis, beta, atom_type_names): charges = [element_to_atomic_number[element] for element in atom_type_names] spin = sum(charges) % 2 coords = np.zeros((len(charges), 3)) reference_mol = pyscf.M(atom=list(zip(charges, coords)), basis=aobasis, spin=spin) basis = pyscf.df.aug_etb(reference_mol, beta) return basis def parse_basis_name(basis_name, atom_type_names): if basis_name.startswith("etb:"): # example: etb:def2-svp:1.5 _, aobasis, beta = basis_name.split(":") return ref_etb(aobasis, float(beta), atom_type_names) else: return basis_name def per_element_irreps_from_basis_name(basis_name, elements): basis = parse_basis_name(basis_name, elements) per_element_irreps = {} if isinstance(basis, str): for e in elements: z = element_to_atomic_number[e] if z % 2 != 0: spin = 1 else: spin = 0 mol = pyscf.M(atom=[[z, [0, 0, 0]]], basis=basis_name, charge=0, spin=spin) per_element_irreps[e] = build_irreps_from_mol(mol) return per_element_irreps else: parity = lambda l: "e" if l % 2 == 0 else "o" irrep_from_item = lambda item: f"1x{item[0]}{parity(item[0])}" for e in elements: per_element_irreps[e] = o3.Irreps( "+".join(irrep_from_item(i) for i in basis[e]) ) return per_element_irreps @lru_cache(maxsize=16) def pyscf_to_standard_perm_D_for_single_irrep(l, p, dtype=torch.float32): if l == 1: return torch.tensor([[0, 1, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype) else: return torch.eye(2 * l + 1, dtype=dtype) @lru_cache(maxsize=32) def e3nn_change_of_coord_D_for_single_irrep(l, p, dtype=torch.float32): cod = torch.tensor( [ # this specifies the change of basis yzx -> xyz [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], ], dtype=dtype, ) irreps = o3.Irreps([(1, (l, p))]) return irreps.D_from_matrix(cod) @lru_cache(maxsize=32) def pyscf_to_e3nn_D_for_single_irrep(l, p, dtype=torch.float32): pyscf_to_std = pyscf_to_standard_perm_D_for_single_irrep(l, p, dtype=dtype) cod_D = e3nn_change_of_coord_D_for_single_irrep(l, p, dtype=dtype) return pyscf_to_std @ cod_D def e3nn_change_of_coord_D(irreps, dtype=torch.float32): perm = torch.block_diag( *[ e3nn_change_of_coord_D_for_single_irrep( orbital.ir.l, orbital.ir.p, dtype=dtype ) for orbital in irreps ] ) return perm def pyscf_to_standard_perm_D(atomic_orbital_irreps, dtype=torch.float32): perm = torch.block_diag( *[ pyscf_to_standard_perm_D_for_single_irrep( orbital.ir.l, orbital.ir.p, dtype=dtype ) for orbital in atomic_orbital_irreps ] ) return perm.to(dtype=dtype) def get_pyscf_to_e3nn_D(atomic_orbital_irreps, dtype=torch.float32): total_D = torch.block_diag( *[ pyscf_to_e3nn_D_for_single_irrep(orbital.ir.l, orbital.ir.p, dtype=dtype) for orbital in atomic_orbital_irreps ] ) return total_D def transform_from_pyscf_to_std_fast_1d(irreps, array: np.ndarray): # only the l=1 orbitals need to be transformed: xyz -> yzx assert array.shape[0] == irreps.dim ret = array.copy() start = 0 for orbital in irreps: if orbital.ir.l == 1: for _ in range(orbital.mul): ret[start : start + 3] = np.roll(ret[start : start + 3], -1, axis=0) start += 3 else: start += orbital.dim return ret def transform_from_std_to_pyscf_fast_1d(irreps, array: np.ndarray): # only the l=1 orbitals need to be transformed: xyz -> yzx assert array.shape[0] == irreps.dim ret = array.copy() start = 0 for orbital in irreps: if orbital.ir.l == 1: for _ in range(orbital.mul): ret[start : start + 3] = np.roll(ret[start : start + 3], 1, axis=0) start += 3 else: start += orbital.dim return ret def transform_from_pyscf_to_std_fast_2d(irreps, matrix: np.ndarray): assert matrix.shape[0] == matrix.shape[1] == irreps.dim ret = matrix.copy() start = 0 for orbital in irreps: if orbital.ir.l == 1: for _ in range(orbital.mul): ret[start : start + 3, :] = np.roll( ret[start : start + 3, :], -1, axis=0 ) ret[:, start : start + 3] = np.roll( ret[:, start : start + 3], -1, axis=1 ) start += 3 else: start += orbital.dim return ret def transform_from_std_to_pyscf_fast_2d(irreps, matrix: np.ndarray): assert matrix.shape[0] == matrix.shape[1] == irreps.dim ret = matrix.copy() start = 0 for orbital in irreps: if orbital.ir.l == 1: for _ in range(orbital.mul): ret[start : start + 3, :] = np.roll( ret[start : start + 3, :], 1, axis=0 ) ret[:, start : start + 3] = np.roll( ret[:, start : start + 3], 1, axis=1 ) start += 3 else: start += orbital.dim return ret class GTOBasis: per_element_irreps: dict[str, o3.Irreps] per_element_numel: dict[str, int] allowed_elements: list[str] allowed_atomic_numbers: list[int] def __init__(self, per_element_irreps: dict[str, str]): self.per_element_irreps = {} self.per_element_numel = {} self.allowed_elements = [] self.allowed_atomic_numbers = [] for elem, irstr in per_element_irreps.items(): irreps = o3.Irreps(irstr) self.per_element_irreps[elem] = irreps self.per_element_numel[elem] = irreps.dim self.allowed_elements.append(elem) self.allowed_atomic_numbers.append(element_to_atomic_number[elem]) @classmethod def from_basis_name(cls, basis_name, elements: list[str]): per_element_irreps = per_element_irreps_from_basis_name(basis_name, elements) return cls(per_element_irreps=per_element_irreps) def irreps_for_mol(self, atom_types: list[int]): atom_elements = [atomic_number_to_element[z] for z in atom_types] atomic_orbital_irreps = o3.Irreps( "+".join(str(self.per_element_irreps[e]) for e in atom_elements) ) return atomic_orbital_irreps class GTOProductBasisHelper: basis: GTOBasis padded_irrep: o3.Irreps per_element_mask: dict[str, np.ndarray] def __init__(self, basis: GTOBasis): self.basis = basis maxl = max(basis.per_element_irreps[e].lmax for e in basis.allowed_elements) parity = lambda l: "e" if l % 2 == 0 else "o" ls = list(range(maxl + 1)) l_irreps = [f"{l}{parity(l)}" for l in ls] per_element_irrep_mul = { e: list(basis.per_element_irreps[e].count(l_ir) for l_ir in l_irreps) for e in basis.allowed_elements } max_mul = list( max(per_element_irrep_mul[e][l] for e in basis.allowed_elements) for l in ls ) max_irreps = "+".join(f"{mul}x{l_ir}" for mul, l_ir in zip(max_mul, l_irreps)) self.padded_irrep = o3.Irreps(max_irreps) self.per_element_mask = {} for e in self.basis.allowed_elements: self.per_element_mask[e] = np.zeros(self.padded_irrep.dim, dtype=bool) element_irreps = basis.per_element_irreps[e] for l, l_ir, lslice in zip(ls, l_irreps, self.padded_irrep.slices()): mul = element_irreps.count(l_ir) l_dim = 2 * l + 1 valid_slice = slice(lslice.start, lslice.start + mul * l_dim) self.per_element_mask[e][valid_slice] = True def transform_from_pyscf_to_std(self, atom_types: list[int], matrix: np.ndarray): # only the l=1 orbitals need to be transformed: xyz -> yzx atomic_orbital_irreps = self.basis.irreps_for_mol(atom_types) return transform_from_pyscf_to_std_fast_2d(atomic_orbital_irreps, matrix) def transform_from_std_to_pyscf(self, atom_types: list[int], matrix: np.ndarray): # only the l=1 orbitals need to be transformed: xyz -> yzx atomic_orbital_irreps = self.basis.irreps_for_mol(atom_types) return transform_from_std_to_pyscf_fast_2d(atomic_orbital_irreps, matrix) def split_matrix_to_padded_blocks( self, atom_types: list[int], matrix: np.ndarray, ) -> tuple[np.ndarray, np.ndarray]: atom_types = np.array(atom_types, dtype=np.int32) natom = len(atom_types) atom_elements = [atomic_number_to_element[z] for z in atom_types] atom_dims = [self.basis.per_element_numel[e] for e in atom_elements] atom_starts = [0] + np.cumsum(atom_dims).tolist()[:-1] diag_blocks = np.zeros( (natom, self.padded_irrep.dim, self.padded_irrep.dim), dtype=matrix.dtype ) diag_masks = np.zeros( (natom, self.padded_irrep.dim, self.padded_irrep.dim), dtype=bool ) tril_blocks = np.zeros( (natom * (natom - 1) // 2, self.padded_irrep.dim, self.padded_irrep.dim), dtype=matrix.dtype, ) tril_masks = np.zeros( (natom * (natom - 1) // 2, self.padded_irrep.dim, self.padded_irrep.dim), dtype=bool, ) tril_edge_index = np.zeros((2, (natom * (natom - 1) // 2)), dtype=np.int64) for i in range(natom): mask_i = self.per_element_mask[atom_elements[i]] slice_i = slice(atom_starts[i], atom_starts[i] + atom_dims[i]) block = matrix[slice_i, slice_i] diag_masks[i] = mask_i[:, None] & mask_i[None, :] diag_blocks[i, diag_masks[i]] = block.reshape(-1) iblock = 0 for i in range(0, natom): mask_i = self.per_element_mask[atom_elements[i]] slice_i = slice(atom_starts[i], atom_starts[i] + atom_dims[i]) for j in range(0, i): # lower triangle mask_j = self.per_element_mask[atom_elements[j]] slice_j = slice(atom_starts[j], atom_starts[j] + atom_dims[j]) tril_masks[iblock, mask_i[:, None] & mask_j[None, :]] = True tril_blocks[iblock, tril_masks[iblock]] = matrix[ slice_i, slice_j ].reshape(-1) tril_edge_index[0, iblock] = i tril_edge_index[1, iblock] = j iblock += 1 return diag_blocks, diag_masks, tril_blocks, tril_masks, tril_edge_index def assemble_matrix_from_padded_blocks( self, atom_types: list[int], padded_diag_blocks: list[np.ndarray], padded_tril_blocks: list[np.ndarray], # in lower triangular order ) -> np.ndarray: atom_types = np.array(atom_types, dtype=np.int32) natom = len(atom_types) atom_elements = [atomic_number_to_element[z] for z in atom_types] atom_dims = [self.basis.per_element_numel[e] for e in atom_elements] atom_starts = [0] + np.cumsum(atom_dims).tolist()[:-1] nao = sum(self.basis.per_element_numel[e] for e in atom_elements) matrix = np.zeros((nao, nao), dtype=padded_diag_blocks[0].dtype) for i in range(natom): slice_i = slice(atom_starts[i], atom_starts[i] + atom_dims[i]) mask_i = self.per_element_mask[atom_elements[i]] block = padded_diag_blocks[i][mask_i][:, mask_i] matrix[slice_i, slice_i] = block iblock = 0 for i in range(0, natom): mask_i = self.per_element_mask[atom_elements[i]] slice_i = slice(atom_starts[i], atom_starts[i] + atom_dims[i]) for j in range(0, i): # lower triangle mask_j = self.per_element_mask[atom_elements[j]] slice_j = slice(atom_starts[j], atom_starts[j] + atom_dims[j]) block = padded_tril_blocks[iblock][mask_i][:, mask_j] matrix[slice_i, slice_j] = block matrix[slice_j, slice_i] = block.T iblock += 1 return matrix class GTOAuxDensityHelper: atom_types: list[int] basis: GTOBasis atomic_orbital_irreps: o3.Irreps atomic_orbital_masks_by_element: dict[str, np.ndarray] atom_indices_by_element: dict[str, np.ndarray] def __init__(self, atom_types: list[int], basis: GTOBasis): self.atom_types = np.array(atom_types, dtype=np.int32) atom_elements = [atomic_number_to_element[z] for z in self.atom_types] self.basis = basis self.atomic_orbital_irreps = self.basis.irreps_for_mol(self.atom_types) mask = np.concatenate( [ [z] * basis.per_element_numel[e] for e, z in zip(atom_elements, self.atom_types) ] ) self.atomic_orbital_masks_by_element = { e: mask == z for e, z in zip(basis.allowed_elements, basis.allowed_atomic_numbers) } self.atom_indices_by_element = { e: np.nonzero(atom_types == z)[0] for e, z in zip(basis.allowed_elements, basis.allowed_atomic_numbers) } def transform_from_pyscf_to_std(self, array: np.ndarray): return transform_from_pyscf_to_std_fast_1d(self.atomic_orbital_irreps, array) def transform_from_std_to_pyscf(self, array: np.ndarray): return transform_from_std_to_pyscf_fast_1d(self.atomic_orbital_irreps, array) def split_ao_by_elements(self, array: np.ndarray): splitted = { e: array[self.atomic_orbital_masks_by_element[e]].reshape( -1, self.basis.per_element_numel[e] ) for e in self.basis.allowed_elements } assert sum(len(v) for v in splitted.values()) == len(self.atom_types) assert sum(v.size for v in splitted.values()) == self.atomic_orbital_irreps.dim return splitted def assemble_ao_from_per_element_arrays(self, splitted: dict[str, np.ndarray]): dtype = next(iter(splitted.values())).dtype array = np.zeros(self.atomic_orbital_irreps.dim, dtype=dtype) for z, mask in self.atomic_orbital_masks_by_element.items(): array[mask] = splitted[z].reshape(-1) return array