# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates # SPDX-License-Identifier: Apache-2.0 import torch import torch.nn as nn from e3nn import o3 from nequip.data import AtomicDataDict from nequip.nn import GraphModuleMixin from gto import GTOBasis class AuxdensityHead(nn.Module): def __init__( self, irreps_in: str | o3.Irreps, type_names: list[str], biases: bool = False, auxbasis: str = "def2-universal-jfit", ): super().__init__() self.auxbasis = GTOBasis.from_basis_name(auxbasis, elements=type_names) self.species_list = list(self.auxbasis.per_element_irreps.keys()) self.per_species_modules = nn.ModuleDict( { species: o3.Linear( irreps_in=irreps_in, irreps_out=irreps_out, biases=biases ) for species, irreps_out in self.auxbasis.per_element_irreps.items() } ) def forward( self, atom_features: torch.Tensor, species_indices: dict[str, torch.Tensor] ): outputs = {} for species in self.species_list: outputs[species] = self.per_species_modules[species]( atom_features[species_indices[species]] ) return outputs class AuxdensityHeadForNequip(GraphModuleMixin, torch.nn.Module): def __init__( self, type_names: list[str], auxbasis: str = "def2-universal-jfit", field: str = AtomicDataDict.NODE_FEATURES_KEY, out_field: str | None = None, biases: bool = True, irreps_in: str | o3.Irreps = None, ): super().__init__() self.field = field out_field = out_field if out_field is not None else field self.out_field = out_field self._init_irreps( irreps_in=irreps_in, required_irreps_in=[field], # we do not init irreps_out here because this module should be the final layer ) self.layer = AuxdensityHead( irreps_in=irreps_in[field], type_names=type_names, auxbasis=auxbasis, biases=biases, ) def forward(self, data): data[self.out_field] = self.layer(data[self.field], data["species_indices"]) return data