Convert dataset to Parquet (#1)
Browse files- Convert dataset to Parquet (b662b33fc844916820ede39f66fe09594e0fee61)
- Delete loading script (dbdab710ecd6259b0cc53c2646570560acb0fae9)
Co-authored-by: Phuc Tran Truong <[email protected]>
- DWIE.py +0 -346
- README.md +79 -11
- Task_1/train-00000-of-00001.parquet +3 -0
DWIE.py
DELETED
|
@@ -1,346 +0,0 @@
|
|
| 1 |
-
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
|
| 2 |
-
# Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 6 |
-
#
|
| 7 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 8 |
-
# you may not use this file except in compliance with the License.
|
| 9 |
-
# You may obtain a copy of the License at
|
| 10 |
-
#
|
| 11 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 12 |
-
#
|
| 13 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 14 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 15 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 16 |
-
# See the License for the specific language governing permissions and
|
| 17 |
-
# limitations under the License.
|
| 18 |
-
"""DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document."""
|
| 19 |
-
|
| 20 |
-
import datasets
|
| 21 |
-
from datasets import DownloadManager
|
| 22 |
-
import os
|
| 23 |
-
import json
|
| 24 |
-
import requests
|
| 25 |
-
from typing import Optional, List, Union
|
| 26 |
-
import argparse
|
| 27 |
-
import hashlib
|
| 28 |
-
from collections import OrderedDict
|
| 29 |
-
from time import sleep
|
| 30 |
-
|
| 31 |
-
#from dataset.utils.tokenizer import TokenizerCPN
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 35 |
-
_CITATION = """\
|
| 36 |
-
@article{ZAPOROJETS2021102563,
|
| 37 |
-
title = {{DWIE}: An entity-centric dataset for multi-task document-level information extraction},
|
| 38 |
-
journal = {Information Processing & Management},
|
| 39 |
-
volume = {58},
|
| 40 |
-
number = {4},
|
| 41 |
-
pages = {102563},
|
| 42 |
-
year = {2021},
|
| 43 |
-
issn = {0306-4573},
|
| 44 |
-
doi = {https://doi.org/10.1016/j.ipm.2021.102563},
|
| 45 |
-
url = {https://www.sciencedirect.com/science/article/pii/S0306457321000662},
|
| 46 |
-
author = {Klim Zaporojets and Johannes Deleu and Chris Develder and Thomas Demeester}
|
| 47 |
-
}
|
| 48 |
-
"""
|
| 49 |
-
|
| 50 |
-
# You can copy an official description
|
| 51 |
-
_DESCRIPTION = """\
|
| 52 |
-
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities
|
| 53 |
-
on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start
|
| 54 |
-
from the detection and classification of named entity mentions in individual sentences. Also, the dataset was
|
| 55 |
-
randomly sampled from a news platform (English online content from Deutsche Welle), and the annotation scheme
|
| 56 |
-
was generated to cover that content. This makes the setting more realistic than in datasets with pre-determined
|
| 57 |
-
annotation schemes, and non-uniform sampling of content to obtain balanced annotations."""
|
| 58 |
-
|
| 59 |
-
# Add a link to an official homepage for the dataset here
|
| 60 |
-
_HOMEPAGE = "https://github.com/klimzaporojets/DWIE"
|
| 61 |
-
|
| 62 |
-
# Add the licence for the dataset here if you can find it
|
| 63 |
-
_LICENSE = ""
|
| 64 |
-
|
| 65 |
-
# Add link to the official dataset URLs here
|
| 66 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 67 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 68 |
-
_URLS = {"Task_1":
|
| 69 |
-
{
|
| 70 |
-
"url":"https://github.com/klimzaporojets/DWIE/archive/refs/heads/master.zip"
|
| 71 |
-
}
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
class DWIE(datasets.GeneratorBasedBuilder):
|
| 77 |
-
"""
|
| 78 |
-
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document.
|
| 79 |
-
"""
|
| 80 |
-
|
| 81 |
-
VERSION = datasets.Version("1.1.0")
|
| 82 |
-
|
| 83 |
-
BUILDER_CONFIGS = [
|
| 84 |
-
datasets.BuilderConfig(name="Task_1", version=VERSION,
|
| 85 |
-
description="Relation classification"),
|
| 86 |
-
]
|
| 87 |
-
DEFAULT_CONFIG_NAME = "Task_1"
|
| 88 |
-
|
| 89 |
-
def _info(self):
|
| 90 |
-
features = datasets.Features(
|
| 91 |
-
{
|
| 92 |
-
"id": datasets.Value("string"),
|
| 93 |
-
"content": datasets.Value("string"),
|
| 94 |
-
"tags": datasets.Value("string"),
|
| 95 |
-
"mentions": [
|
| 96 |
-
{
|
| 97 |
-
"begin": datasets.Value("int32"),
|
| 98 |
-
"end": datasets.Value("int32"),
|
| 99 |
-
"text": datasets.Value("string"),
|
| 100 |
-
"concept": datasets.Value("int32"),
|
| 101 |
-
"candidates" : datasets.Sequence(datasets.Value("string")),
|
| 102 |
-
"scores": datasets.Sequence(datasets.Value("float32"))
|
| 103 |
-
}
|
| 104 |
-
],
|
| 105 |
-
"concepts": [
|
| 106 |
-
{
|
| 107 |
-
"concept": datasets.Value("int32"),
|
| 108 |
-
"text": datasets.Value("string"),
|
| 109 |
-
"keyword": datasets.Value("bool"),
|
| 110 |
-
"count": datasets.Value("int32"),
|
| 111 |
-
"link": datasets.Value("string"),
|
| 112 |
-
"tags": datasets.Sequence(datasets.Value("string")),
|
| 113 |
-
|
| 114 |
-
}
|
| 115 |
-
],
|
| 116 |
-
"relations": [
|
| 117 |
-
{
|
| 118 |
-
"s": datasets.Value("int32"),
|
| 119 |
-
"p": datasets.Value("string"),
|
| 120 |
-
"o": datasets.Value("int32"),
|
| 121 |
-
|
| 122 |
-
}
|
| 123 |
-
],
|
| 124 |
-
"frames": [
|
| 125 |
-
{
|
| 126 |
-
"type": datasets.Value("string"),
|
| 127 |
-
"slots": [{
|
| 128 |
-
"name": datasets.Value("string"),
|
| 129 |
-
"value":datasets.Value("int32")
|
| 130 |
-
}]
|
| 131 |
-
|
| 132 |
-
}
|
| 133 |
-
],
|
| 134 |
-
"iptc": datasets.Sequence(datasets.Value("string"))
|
| 135 |
-
|
| 136 |
-
}
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
return datasets.DatasetInfo(
|
| 140 |
-
# This is the description that will appear on the datasets page.
|
| 141 |
-
description=_DESCRIPTION,
|
| 142 |
-
# This defines the different columns of the dataset and their types
|
| 143 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 144 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 145 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 146 |
-
# supervised_keys=("sentence", "label"),
|
| 147 |
-
# Homepage of the dataset for documentation
|
| 148 |
-
homepage=_HOMEPAGE,
|
| 149 |
-
# License for the dataset if available
|
| 150 |
-
license=_LICENSE,
|
| 151 |
-
# Citation for the dataset
|
| 152 |
-
citation=_CITATION,
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
def _split_generators(self, dl_manager):
|
| 156 |
-
|
| 157 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 158 |
-
|
| 159 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 160 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 161 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 162 |
-
|
| 163 |
-
urls = _URLS[self.config.name]
|
| 164 |
-
downloaded = dl_manager.download_and_extract(_URLS)
|
| 165 |
-
article_id_to_url_json= json.load(open(downloaded['Task_1']['url'] + '/DWIE-master/data/article_id_to_url.json'))
|
| 166 |
-
ids_to_new_ids = dict()
|
| 167 |
-
# some ids seem to be different, for now only this one:
|
| 168 |
-
ids_to_new_ids[18525950] = 19026607
|
| 169 |
-
|
| 170 |
-
should_tokenize = False
|
| 171 |
-
|
| 172 |
-
content_to_new_content = {'DW_40663341': [('starting with Sunday\'s', 'starting Sunday\'s'),
|
| 173 |
-
('$1 million (€840,000)', 'one million dollars (840,000 euros)'),
|
| 174 |
-
('who kneel in protest during', 'to kneel in protest during')]}
|
| 175 |
-
|
| 176 |
-
articles_done = 0
|
| 177 |
-
total_articles = len(article_id_to_url_json)
|
| 178 |
-
problematic_articles = set()
|
| 179 |
-
problematic_hash_articles = set()
|
| 180 |
-
all_annos = []
|
| 181 |
-
for curr_article in article_id_to_url_json:
|
| 182 |
-
article_id = curr_article['id']
|
| 183 |
-
article_url = curr_article['url']
|
| 184 |
-
article_id_nr = int(article_id[3:])
|
| 185 |
-
if article_id_nr in ids_to_new_ids:
|
| 186 |
-
article_url = article_url.replace(str(article_id_nr), str(ids_to_new_ids[article_id_nr]))
|
| 187 |
-
article_hash = curr_article['hash']
|
| 188 |
-
#print('fetching {} out of {} articles -'.format(articles_done, total_articles), curr_article)
|
| 189 |
-
|
| 190 |
-
annos_only_art_path = downloaded['Task_1']['url'] + '/DWIE-master/data/annos/' + curr_article['id'] + '.json'
|
| 191 |
-
annos_only_json = json.load(open(annos_only_art_path))
|
| 192 |
-
done = False
|
| 193 |
-
attempts = 0
|
| 194 |
-
while not done and attempts <= 3:
|
| 195 |
-
# try:
|
| 196 |
-
a = requests.get(article_url, allow_redirects=True).json()
|
| 197 |
-
if 'name' in a:
|
| 198 |
-
article_title = a['name']
|
| 199 |
-
else:
|
| 200 |
-
print('WARNING: no name detected for ', article_id)
|
| 201 |
-
article_title = ''
|
| 202 |
-
if 'teaser' in a:
|
| 203 |
-
article_teaser = a['teaser']
|
| 204 |
-
else:
|
| 205 |
-
print('WARNING: no teaser detected for ', article_id)
|
| 206 |
-
article_teaser = ''
|
| 207 |
-
|
| 208 |
-
if 'text' in a:
|
| 209 |
-
article_text = a['text']
|
| 210 |
-
else:
|
| 211 |
-
print('WARNING: no text detected for ', article_id)
|
| 212 |
-
article_text = ''
|
| 213 |
-
|
| 214 |
-
article_content_no_strip = '{}\n{}\n{}'.format(article_title, article_teaser, article_text)
|
| 215 |
-
article_content = article_content_no_strip
|
| 216 |
-
|
| 217 |
-
if article_id in content_to_new_content:
|
| 218 |
-
for str_dw, str_dwie in content_to_new_content[article_id]:
|
| 219 |
-
article_content = article_content.replace(str_dw, str_dwie)
|
| 220 |
-
|
| 221 |
-
if 'mentions' in annos_only_json:
|
| 222 |
-
for idx_mention, curr_mention in enumerate(annos_only_json['mentions']):
|
| 223 |
-
curr_mention_text = curr_mention['text'].replace(' ', ' ')
|
| 224 |
-
curr_mention_text = curr_mention_text.replace('', '')
|
| 225 |
-
solved = False
|
| 226 |
-
if "begin" not in curr_mention:
|
| 227 |
-
curr_mention["begin"] = 0
|
| 228 |
-
if "end" not in curr_mention:
|
| 229 |
-
curr_mention["end"] = 0
|
| 230 |
-
if "text" not in curr_mention:
|
| 231 |
-
curr_mention["text"] = ""
|
| 232 |
-
if "concept" not in curr_mention:
|
| 233 |
-
curr_mention["concept"] = 0
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
if "candidates" not in curr_mention:
|
| 237 |
-
curr_mention["candidates"] = []
|
| 238 |
-
if "scores" not in curr_mention:
|
| 239 |
-
curr_mention["scores"] = []
|
| 240 |
-
|
| 241 |
-
if article_content[curr_mention['begin']:curr_mention['end']] != curr_mention_text:
|
| 242 |
-
curr_mention_begin = curr_mention['begin']
|
| 243 |
-
curr_mention_end = curr_mention['end']
|
| 244 |
-
offset = 0
|
| 245 |
-
|
| 246 |
-
if not solved:
|
| 247 |
-
print('--------------------------------')
|
| 248 |
-
print('ERROR ALIGNMENT: texts don\'t match for {}: "{}" vs "{}", the textual content of '
|
| 249 |
-
'the files won\'t be complete '
|
| 250 |
-
.format(article_id, article_content[curr_mention['begin']:curr_mention['end']],
|
| 251 |
-
curr_mention_text))
|
| 252 |
-
print('--------------------------------')
|
| 253 |
-
problematic_articles.add(article_id)
|
| 254 |
-
else:
|
| 255 |
-
if "candidates" not in curr_mention:
|
| 256 |
-
curr_mention["candidates"] = []
|
| 257 |
-
|
| 258 |
-
curr_mention['begin'] = curr_mention_begin - offset
|
| 259 |
-
curr_mention['end'] = curr_mention_end - offset
|
| 260 |
-
if 'concepts' in annos_only_json:
|
| 261 |
-
for idx_concept, curr_concept in enumerate(annos_only_json['concepts']):
|
| 262 |
-
if "concept" not in curr_concept:
|
| 263 |
-
curr_concept["concept"] = 0
|
| 264 |
-
if "text" not in curr_concept:
|
| 265 |
-
curr_concept["text"] = ""
|
| 266 |
-
if "count" not in curr_concept:
|
| 267 |
-
curr_concept["count"] = 0
|
| 268 |
-
if "link" not in curr_concept:
|
| 269 |
-
curr_concept["link"] = ""
|
| 270 |
-
if "tags" not in curr_concept:
|
| 271 |
-
curr_concept["tags"] = []
|
| 272 |
-
|
| 273 |
-
if not should_tokenize:
|
| 274 |
-
annos_json = {'id': annos_only_json['id'],
|
| 275 |
-
'content': article_content,
|
| 276 |
-
'tags': annos_only_json['tags'],
|
| 277 |
-
'mentions': annos_only_json['mentions'],
|
| 278 |
-
'concepts': annos_only_json['concepts'],
|
| 279 |
-
'relations': annos_only_json['relations'],
|
| 280 |
-
'frames': annos_only_json['frames'],
|
| 281 |
-
'iptc': annos_only_json['iptc']}
|
| 282 |
-
all_annos.append(annos_json)
|
| 283 |
-
|
| 284 |
-
#print("annos_json",annos_json)
|
| 285 |
-
else:
|
| 286 |
-
tokenized = tokenizer.tokenize(article_content)
|
| 287 |
-
tokens = list()
|
| 288 |
-
begin = list()
|
| 289 |
-
end = list()
|
| 290 |
-
for curr_token in tokenized:
|
| 291 |
-
tokens.append(curr_token['token'])
|
| 292 |
-
begin.append(curr_token['offset'])
|
| 293 |
-
end.append(curr_token['offset'] + curr_token['length'])
|
| 294 |
-
annos_json = OrderedDict({'id': annos_only_json['id'],
|
| 295 |
-
'content': article_content,
|
| 296 |
-
'tokenization': OrderedDict({'tokens': tokens, 'begin': begin, 'end': end}),
|
| 297 |
-
'tags': annos_only_json['tags'],
|
| 298 |
-
'mentions': annos_only_json['mentions'],
|
| 299 |
-
'concepts': annos_only_json['concepts'],
|
| 300 |
-
'relations': annos_only_json['relations'],
|
| 301 |
-
'frames': annos_only_json['frames'],
|
| 302 |
-
'iptc': annos_only_json['iptc']})
|
| 303 |
-
|
| 304 |
-
hash_content = hashlib.sha1(article_content.encode("UTF-8")).hexdigest()
|
| 305 |
-
|
| 306 |
-
if hash_content != article_hash:
|
| 307 |
-
print('!!ERROR - hash doesn\'t match for ', article_id)
|
| 308 |
-
problematic_hash_articles.add(article_id)
|
| 309 |
-
attempts += 1
|
| 310 |
-
|
| 311 |
-
sleep(.1)
|
| 312 |
-
done = True
|
| 313 |
-
if done:
|
| 314 |
-
articles_done += 1
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
return[
|
| 318 |
-
datasets.SplitGenerator(
|
| 319 |
-
name=datasets.Split.TRAIN,
|
| 320 |
-
# These kwargs will be passed to _generate_examples
|
| 321 |
-
gen_kwargs={
|
| 322 |
-
"all_annos" : all_annos,
|
| 323 |
-
|
| 324 |
-
}
|
| 325 |
-
|
| 326 |
-
)
|
| 327 |
-
]
|
| 328 |
-
|
| 329 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 330 |
-
def _generate_examples(self, all_annos):
|
| 331 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 332 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 333 |
-
for data in all_annos:
|
| 334 |
-
yield data['id'], {
|
| 335 |
-
"id": data['id'],
|
| 336 |
-
"content":data['content'],
|
| 337 |
-
"tags": data['tags'],
|
| 338 |
-
"mentions": data['mentions'],
|
| 339 |
-
"concepts": data['concepts'],
|
| 340 |
-
"relations": data['relations'],
|
| 341 |
-
"frames": data['frames'],
|
| 342 |
-
"iptc": data['iptc']
|
| 343 |
-
}
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,28 +1,96 @@
|
|
| 1 |
---
|
| 2 |
-
license: other
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
pretty_name: >-
|
| 6 |
-
DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset for
|
| 7 |
-
document-level multi-task Information Extraction (IE).
|
| 8 |
-
size_categories:
|
| 9 |
-
- 10M<n<100M
|
| 10 |
annotations_creators:
|
| 11 |
- expert-generated
|
| 12 |
language_creators:
|
| 13 |
- found
|
|
|
|
|
|
|
|
|
|
| 14 |
multilinguality:
|
| 15 |
- monolingual
|
| 16 |
-
|
|
|
|
| 17 |
source_datasets:
|
| 18 |
- original
|
| 19 |
-
tags:
|
| 20 |
-
- Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
|
| 21 |
task_categories:
|
| 22 |
- feature-extraction
|
| 23 |
- text-classification
|
| 24 |
task_ids:
|
| 25 |
- entity-linking-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
train-eval-index:
|
| 27 |
- col_mapping:
|
| 28 |
labels: tags
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
annotations_creators:
|
| 3 |
- expert-generated
|
| 4 |
language_creators:
|
| 5 |
- found
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
license: other
|
| 9 |
multilinguality:
|
| 10 |
- monolingual
|
| 11 |
+
size_categories:
|
| 12 |
+
- 10M<n<100M
|
| 13 |
source_datasets:
|
| 14 |
- original
|
|
|
|
|
|
|
| 15 |
task_categories:
|
| 16 |
- feature-extraction
|
| 17 |
- text-classification
|
| 18 |
task_ids:
|
| 19 |
- entity-linking-classification
|
| 20 |
+
paperswithcode_id: acronym-identification
|
| 21 |
+
pretty_name: DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset
|
| 22 |
+
for document-level multi-task Information Extraction (IE).
|
| 23 |
+
tags:
|
| 24 |
+
- Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
|
| 25 |
+
dataset_info:
|
| 26 |
+
config_name: Task_1
|
| 27 |
+
features:
|
| 28 |
+
- name: id
|
| 29 |
+
dtype: string
|
| 30 |
+
- name: content
|
| 31 |
+
dtype: string
|
| 32 |
+
- name: tags
|
| 33 |
+
dtype: string
|
| 34 |
+
- name: mentions
|
| 35 |
+
list:
|
| 36 |
+
- name: begin
|
| 37 |
+
dtype: int32
|
| 38 |
+
- name: end
|
| 39 |
+
dtype: int32
|
| 40 |
+
- name: text
|
| 41 |
+
dtype: string
|
| 42 |
+
- name: concept
|
| 43 |
+
dtype: int32
|
| 44 |
+
- name: candidates
|
| 45 |
+
sequence: string
|
| 46 |
+
- name: scores
|
| 47 |
+
sequence: float32
|
| 48 |
+
- name: concepts
|
| 49 |
+
list:
|
| 50 |
+
- name: concept
|
| 51 |
+
dtype: int32
|
| 52 |
+
- name: text
|
| 53 |
+
dtype: string
|
| 54 |
+
- name: keyword
|
| 55 |
+
dtype: bool
|
| 56 |
+
- name: count
|
| 57 |
+
dtype: int32
|
| 58 |
+
- name: link
|
| 59 |
+
dtype: string
|
| 60 |
+
- name: tags
|
| 61 |
+
sequence: string
|
| 62 |
+
- name: relations
|
| 63 |
+
list:
|
| 64 |
+
- name: s
|
| 65 |
+
dtype: int32
|
| 66 |
+
- name: p
|
| 67 |
+
dtype: string
|
| 68 |
+
- name: o
|
| 69 |
+
dtype: int32
|
| 70 |
+
- name: frames
|
| 71 |
+
list:
|
| 72 |
+
- name: type
|
| 73 |
+
dtype: string
|
| 74 |
+
- name: slots
|
| 75 |
+
list:
|
| 76 |
+
- name: name
|
| 77 |
+
dtype: string
|
| 78 |
+
- name: value
|
| 79 |
+
dtype: int32
|
| 80 |
+
- name: iptc
|
| 81 |
+
sequence: string
|
| 82 |
+
splits:
|
| 83 |
+
- name: train
|
| 84 |
+
num_bytes: 16533390
|
| 85 |
+
num_examples: 802
|
| 86 |
+
download_size: 3822277
|
| 87 |
+
dataset_size: 16533390
|
| 88 |
+
configs:
|
| 89 |
+
- config_name: Task_1
|
| 90 |
+
data_files:
|
| 91 |
+
- split: train
|
| 92 |
+
path: Task_1/train-*
|
| 93 |
+
default: true
|
| 94 |
train-eval-index:
|
| 95 |
- col_mapping:
|
| 96 |
labels: tags
|
Task_1/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03fd09eda0e5e817a194d85c10d513f0952f0b5596d0f421f50ef5d7a0011b26
|
| 3 |
+
size 3822277
|