File size: 10,464 Bytes
e5933f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import argparse
from dataclasses import dataclass
from multiprocessing import cpu_count
from pathlib import Path
import numpy as np
import torch
import yaml
from torch.utils.data import DataLoader
from tqdm import tqdm
from constants import HIDDEN_SIZE, TARGET_SAMPLE_RATE
from data import FixedSegmentationDatasetNoTarget, segm_collate_fn
from eval import infer
from models import SegmentationFrameClassifer, prepare_wav2vec
import os
@dataclass
class Segment:
start: float
end: float
probs: np.array
decimal: int = 4
@property
def duration(self):
return float(round((self.end - self.start) / TARGET_SAMPLE_RATE, self.decimal))
@property
def offset(self):
return float(round(self.start / TARGET_SAMPLE_RATE, self.decimal))
@property
def offset_plus_duration(self):
return round(self.offset + self.duration, self.decimal)
def trim(sgm: Segment, threshold: float) -> Segment:
"""reduces the segment to between the first and last points that are above the threshold
Args:
sgm (Segment): a segment
threshold (float): probability threshold
Returns:
Segment: new reduced segment
"""
included_indices = np.where(sgm.probs >= threshold)[0]
# return empty segment
if not len(included_indices):
return Segment(sgm.start, sgm.start, np.empty([0]))
i = included_indices[0]
j = included_indices[-1] + 1
sgm = Segment(sgm.start + i, sgm.start + j, sgm.probs[i:j])
return sgm
def split_and_trim(
sgm: Segment, split_idx: int, threshold: float
) -> tuple[Segment, Segment]:
"""splits the input segment at the split_idx and then trims and returns the two resulting segments
Args:
sgm (Segment): input segment
split_idx (int): index to split the input segment
threshold (float): probability threshold
Returns:
tuple[Segment, Segment]: the two resulting segments
"""
probs_a = sgm.probs[:split_idx]
sgm_a = Segment(sgm.start, sgm.start + len(probs_a), probs_a)
probs_b = sgm.probs[split_idx + 1 :]
sgm_b = Segment(sgm_a.end + 1, sgm.end, probs_b)
sgm_a = trim(sgm_a, threshold)
sgm_b = trim(sgm_b, threshold)
return sgm_a, sgm_b
def pdac(
probs: np.array,
max_segment_length: float,
min_segment_length: float,
threshold: float,
not_strict: bool
) -> list[Segment]:
"""applies the probabilistic Divide-and-Conquer algorithm to split an audio
into segments satisfying the max-segment-length and min-segment-length conditions
Args:
probs (np.array): the binary frame-level probabilities
output by the segmentation-frame-classifier
max_segment_length (float): the maximum length of a segment
min_segment_length (float): the minimum length of a segment
threshold (float): probability threshold
not_strict (bool): whether segments longer than max are allowed
Returns:
list[Segment]: resulting segmentation
"""
segments = []
sgm = Segment(0, len(probs), probs)
sgm = trim(sgm, threshold)
def recusrive_split(sgm):
if sgm.duration < max_segment_length:
segments.append(sgm)
else:
j = 0
sorted_indices = np.argsort(sgm.probs)
while j < len(sorted_indices):
split_idx = sorted_indices[j]
split_prob = sgm.probs[split_idx]
if not_strict and split_prob > threshold:
segments.append(sgm)
break
sgm_a, sgm_b = split_and_trim(sgm, split_idx, threshold)
if (
sgm_a.duration > min_segment_length
and sgm_b.duration > min_segment_length
):
recusrive_split(sgm_a)
recusrive_split(sgm_b)
break
j += 1
else:
if not_strict:
segments.append(sgm)
else:
if sgm_a.duration > min_segment_length:
recusrive_split(sgm_a)
if sgm_b.duration > min_segment_length:
recusrive_split(sgm_b)
recusrive_split(sgm)
return segments
def update_yaml_content(
yaml_content: list[dict], segments: list[Segment], wav_name: str
) -> list[dict]:
"""extends the yaml content with the segmentation of this wav file
Args:
yaml_content (list[dict]): segmentation in yaml format
segments (list[Segment]): resulting segmentation from pdac
wav_name (str): name of the wav file
Returns:
list[dict]: extended segmentation in yaml format
"""
for sgm in segments:
yaml_content.append(
{
"duration": sgm.duration,
"offset": sgm.offset,
"rW": 0,
"uW": 0,
"speaker_id": "NA",
"wav": wav_name,
}
)
return yaml_content
def segment(args):
device = (
torch.device(f"cuda:0")
if torch.cuda.device_count() > 0
else torch.device("cpu")
)
checkpoint = torch.load(args.path_to_checkpoint, map_location=device)
# init wav2vec 2.0
wav2vec_model = prepare_wav2vec(
checkpoint["args"].model_name,
checkpoint["args"].wav2vec_keep_layers,
device,
)
# init segmentation frame classifier
sfc_model = SegmentationFrameClassifer(
d_model=HIDDEN_SIZE,
n_transformer_layers=checkpoint["args"].classifier_n_transformer_layers,
).to(device)
sfc_model.load_state_dict(checkpoint["state_dict"])
sfc_model.eval()
yaml_content = []
with open(args.wavs, 'r') as file:
wav_paths = [x.strip() for x in file.readlines()]
#for wav_path in sorted(list(Path(args.path_to_wavs).glob("*.wav"))):
for wav_path in wav_paths:
# initialize a dataset for the fixed segmentation
dataset = FixedSegmentationDatasetNoTarget(wav_path, args.inference_segment_length, args.inference_times)
sgm_frame_probs = None
for inference_iteration in range(args.inference_times):
# create a dataloader for this fixed-length segmentation of the wav file
dataset.fixed_length_segmentation(inference_iteration)
dataloader = DataLoader(
dataset,
batch_size=args.inference_batch_size,
num_workers=min(cpu_count() // 2, 4),
shuffle=False,
drop_last=False,
collate_fn=segm_collate_fn,
)
# get frame segmentation frame probabilities in the output space
probs, _ = infer(
wav2vec_model,
sfc_model,
dataloader,
device,
)
if sgm_frame_probs is None:
sgm_frame_probs = probs.copy()
else:
sgm_frame_probs += probs
sgm_frame_probs /= args.inference_times
segments = pdac(
sgm_frame_probs,
args.dac_max_segment_length,
args.dac_min_segment_length,
args.dac_threshold,
args.not_strict
)
wav_path_name = os.path.basename(wav_path)
for sgm in segments:
print(f"Segmentation:{wav_path_name}\t{sgm.offset}\t{sgm.duration}")
yaml_content = update_yaml_content(yaml_content, segments, wav_path_name)
path_to_segmentation_yaml = Path(args.path_to_segmentation_yaml)
path_to_segmentation_yaml.parent.mkdir(parents=True, exist_ok=True)
with open(path_to_segmentation_yaml, "w") as f:
yaml.dump(yaml_content, f, default_flow_style=True)
print(
f"Saved SHAS segmentation with max={args.dac_max_segment_length} & "
f"min={args.dac_min_segment_length} at {path_to_segmentation_yaml}"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--path_to_segmentation_yaml",
"-yaml",
type=str,
required=True,
help="absolute path to the yaml file to save the generated segmentation",
)
parser.add_argument(
"--path_to_checkpoint",
"-ckpt",
type=str,
required=True,
help="absolute path to the audio-frame-classifier checkpoint",
)
parser.add_argument(
"-wavs",
type=str,
help="absolute path to the directory of the wav audios to be segmented",
)
parser.add_argument(
"--inference_batch_size",
"-bs",
type=int,
default=12,
help="batch size (in examples) of inference with the audio-frame-classifier",
)
parser.add_argument(
"--inference_segment_length",
"-len",
type=int,
default=20,
help="segment length (in seconds) of fixed-length segmentation during inference"
"with audio-frame-classifier",
)
parser.add_argument(
"--inference_times",
"-n",
type=int,
default=1,
help="how many times to apply inference on different fixed-length segmentations"
"of each wav",
)
parser.add_argument(
"--dac_max_segment_length",
"-max",
type=float,
default=20.0,
help="the segmentation algorithm splits until all segments are below this value"
"(in seconds)",
)
parser.add_argument(
"--dac_min_segment_length",
"-min",
type=float,
default=0.2,
help="a split by the algorithm is carried out only if the resulting two segments"
"are above this value (in seconds)",
)
parser.add_argument(
"--dac_threshold",
"-thr",
type=float,
default=0.5,
help="after each split by the algorithm, the resulting segments are trimmed to"
"the first and last points that corresponds to a probability above this value",
)
parser.add_argument(
"--not_strict",
action="store_true",
help="whether segments longer than max are allowed."
"If this argument is used, respecting the classification threshold conditions (p > thr)"
"is more important than the length conditions (len < max)."
)
args = parser.parse_args()
segment(args)
|