spapi commited on
Commit
7c75574
·
verified ·
1 Parent(s): 213fb23

Add main FAMA data README

Browse files
Files changed (1) hide show
  1. README.md +146 -3
README.md CHANGED
@@ -1,3 +1,146 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - translation
5
+ - automatic-speech-recognition
6
+ language:
7
+ - it
8
+ - en
9
+ multilinguality:
10
+ - multilingual
11
+ pretty_name: FAMA-data
12
+ tags:
13
+ - speech
14
+ - speech-to-text
15
+ - open-source
16
+ - speech translation
17
+ - ST
18
+ - ASR
19
+ - audio
20
+ - text
21
+ size_categories:
22
+ - 100K<n<1M
23
+ ---
24
+
25
+ <img src="https://huggingface.co/FBK-MT/fama-small/resolve/main/FAMA.png" align="center" width="100%">
26
+
27
+ ### Dataset Description, Collection, and Source
28
+
29
+ The FAMA training data is the collection of English and Italian datasets for automatic speech recognition (ASR) and speech translation (ST)
30
+ used to train the [FAMA models family](https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e).
31
+ The ASR section of FAMA is derived from the [MOSEL data collection](https://github.com/hlt-mt/mosel), including the automatic
32
+ transcripts obtained with Whisper and available in the [HuggingFace MOSEL Dataset](https://huggingface.co/datasets/FBK-MT/mosel).
33
+ The ASR is further augmented with automatically transcribed speech from the
34
+ [YouTube-Commons dataset](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
35
+ The ST section is composed of gold-labeled ST datasets and the automatic translations of the ASR datasets with
36
+ [MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt).
37
+ The complete list of datasets for both tasks are reported in the [Dataset Statistics](#dataset-statistics).
38
+
39
+ - **Curated by:** Sara Papi, Marco Gaido, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
40
+ - **Funded by:** FAIR, Meetween, and CINECA
41
+ - **Shared by:** Fondazione Bruno Kessler
42
+
43
+ ### License
44
+ - CC-BY-4.0
45
+
46
+ ### Dataset Sources
47
+
48
+ - **MOSEL Collection:** [MOSEL GitHub](https://github.com/hlt-mt/mosel)
49
+ - **MOSEL Pseudolabels:** [MOSEL HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel)
50
+ - **YouTube-Commons:** [YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons)
51
+ - **Paper:** [FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian](https://huggingface.co/papers/2505.22759)
52
+
53
+ ## Dataset Structure
54
+
55
+ ### Data Config
56
+ The dataset is split into multiple tsv files corresponding to the dataset name and the source and target languages,
57
+ either Italian (it) and English (en), containing both the ASR transcript and translation in the other language.
58
+
59
+ ### Data Field
60
+
61
+ `id`: unique id of the segment (text, e.g.: "5NTUCHeZuds_0")
62
+
63
+ `audio`: filename (text, e.g. "5NTUCHeZuds.wav")
64
+
65
+ `offset`: start of the segment, in seconds (float, e.g. "0.020")
66
+
67
+ `duration`: duration of the segments, in seconds (float, e.g. "5.946")
68
+
69
+ `speaker`: id of the speaker (text, e.g. "000")
70
+
71
+ `src_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
72
+
73
+ `src_text`: recognized text (text, e.g. "Grazie a tutti.")
74
+
75
+ `tgt_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
76
+
77
+ `tgt_text`: translated text (text, e.g. "Thank you all.")
78
+
79
+ `ASR`: True/False - indicates whether the sample has been used for ASR training
80
+
81
+ `ST`: True/False - indicates whether the sample has been used for ST training
82
+
83
+ ## Dataset Statistics
84
+
85
+ The full list of FAMA training datasets, together with the number of hours for each language/language pair and
86
+ the type of labels (A for automatic and G for gold labels) is reported below for both ASR and ST tasks.
87
+
88
+ ### Automatic Speech Recognition (ASR)
89
+ | Dataset | English (h) | Italian (h) | Label |
90
+ |--------|--------|--------|-------|
91
+ | CommonVoice v18 | 1,746 | 250 | G |
92
+ | CoVoST2 | 420 | 28 | G |
93
+ | FLEURS | 7 | 9 | G |
94
+ | LibriSpeech | 358 | - | G |
95
+ | MOSEL | 66,301 | 21,775 | A |
96
+ | MLS | 44,600 | 247 | G |
97
+ | VoxPopuli-ASR | 519 | 74 | G |
98
+ | YouTube-Commons | 14,200 | 1,828 | A |
99
+ | **TOTAL** | 128,152 | 24,211 | G+A |
100
+
101
+ ### Speech Translation (ST)
102
+ | Dataset | English (h) | Italian (h) | Label |
103
+ |--------|--------|--------|-------|
104
+ | CommonVoice v18 | 1,746 | 250 | A |
105
+ | CoVoST2 | 420 | 28 | A |
106
+ | LibriSpeech | 358 | - | A |
107
+ | MOSEL | 66,301 | 21,775 | A |
108
+ | MLS | 44,600 | 247 | A |
109
+ | VoxPopuli-ASR | 519 | 74 | A |
110
+ | YouTube-Commons | 14,200 | 1,828 | A |
111
+ | *TOTAL (A)* | 128,144 | 24,202 | A |
112
+ | *FILTERED (A)* | 123,777 | 23,445 | A |
113
+ | CoVoST2 | 420 | 28 | G |
114
+ | FLEURS | 7 | 9 | G |
115
+ | **TOTAL** | 124,204 | 23,482 | G+A |
116
+
117
+ ## Dataset Creation
118
+ To reproduce the MOSEL-derived datasets (all but YouTube-Commons), please refer to the
119
+ [MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository and to the
120
+ [MOSEL data card on HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel).
121
+
122
+ To download and process YouTube-Commons, please refer to the
123
+ [dedicated YouTube-Commons README](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/YouTube-Commons-README.md).
124
+
125
+ The code used to produce all translations with [MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt) is the following:
126
+ ```
127
+ ```
128
+
129
+ The script used for filtering the ST datasets is
130
+ [`filter_tsv_based_on_ratio`](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/filter_tsv_based_on_ratio.py) and
131
+ available in the `scripts` folder of this repository.
132
+ For English speech datasets, we set `--threshold-min 0.75` and `--threshold-max 1.45`
133
+ while, for the Italian speech datasets, `--threshold-min 0.65` and `--threshold-max 1.35`.
134
+
135
+
136
+ ## Citation
137
+ ```
138
+ @misc{papi2025fama,
139
+ title={FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian},
140
+ author={Sara Papi and Marco Gaido and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabih and Matteo Negri},
141
+ year={2025}
142
+ }
143
+ ```
144
+
145
+ ## Dataset Card Contact
146
+ [@spapi](https://huggingface.co/spapi)