Add main FAMA data README
Browse files
README.md
CHANGED
|
@@ -1,3 +1,146 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-4.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- translation
|
| 5 |
+
- automatic-speech-recognition
|
| 6 |
+
language:
|
| 7 |
+
- it
|
| 8 |
+
- en
|
| 9 |
+
multilinguality:
|
| 10 |
+
- multilingual
|
| 11 |
+
pretty_name: FAMA-data
|
| 12 |
+
tags:
|
| 13 |
+
- speech
|
| 14 |
+
- speech-to-text
|
| 15 |
+
- open-source
|
| 16 |
+
- speech translation
|
| 17 |
+
- ST
|
| 18 |
+
- ASR
|
| 19 |
+
- audio
|
| 20 |
+
- text
|
| 21 |
+
size_categories:
|
| 22 |
+
- 100K<n<1M
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
<img src="https://huggingface.co/FBK-MT/fama-small/resolve/main/FAMA.png" align="center" width="100%">
|
| 26 |
+
|
| 27 |
+
### Dataset Description, Collection, and Source
|
| 28 |
+
|
| 29 |
+
The FAMA training data is the collection of English and Italian datasets for automatic speech recognition (ASR) and speech translation (ST)
|
| 30 |
+
used to train the [FAMA models family](https://huggingface.co/collections/FBK-MT/fama-683425df3fb2b3171e0cdc9e).
|
| 31 |
+
The ASR section of FAMA is derived from the [MOSEL data collection](https://github.com/hlt-mt/mosel), including the automatic
|
| 32 |
+
transcripts obtained with Whisper and available in the [HuggingFace MOSEL Dataset](https://huggingface.co/datasets/FBK-MT/mosel).
|
| 33 |
+
The ASR is further augmented with automatically transcribed speech from the
|
| 34 |
+
[YouTube-Commons dataset](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
|
| 35 |
+
The ST section is composed of gold-labeled ST datasets and the automatic translations of the ASR datasets with
|
| 36 |
+
[MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt).
|
| 37 |
+
The complete list of datasets for both tasks are reported in the [Dataset Statistics](#dataset-statistics).
|
| 38 |
+
|
| 39 |
+
- **Curated by:** Sara Papi, Marco Gaido, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
|
| 40 |
+
- **Funded by:** FAIR, Meetween, and CINECA
|
| 41 |
+
- **Shared by:** Fondazione Bruno Kessler
|
| 42 |
+
|
| 43 |
+
### License
|
| 44 |
+
- CC-BY-4.0
|
| 45 |
+
|
| 46 |
+
### Dataset Sources
|
| 47 |
+
|
| 48 |
+
- **MOSEL Collection:** [MOSEL GitHub](https://github.com/hlt-mt/mosel)
|
| 49 |
+
- **MOSEL Pseudolabels:** [MOSEL HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel)
|
| 50 |
+
- **YouTube-Commons:** [YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons)
|
| 51 |
+
- **Paper:** [FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian](https://huggingface.co/papers/2505.22759)
|
| 52 |
+
|
| 53 |
+
## Dataset Structure
|
| 54 |
+
|
| 55 |
+
### Data Config
|
| 56 |
+
The dataset is split into multiple tsv files corresponding to the dataset name and the source and target languages,
|
| 57 |
+
either Italian (it) and English (en), containing both the ASR transcript and translation in the other language.
|
| 58 |
+
|
| 59 |
+
### Data Field
|
| 60 |
+
|
| 61 |
+
`id`: unique id of the segment (text, e.g.: "5NTUCHeZuds_0")
|
| 62 |
+
|
| 63 |
+
`audio`: filename (text, e.g. "5NTUCHeZuds.wav")
|
| 64 |
+
|
| 65 |
+
`offset`: start of the segment, in seconds (float, e.g. "0.020")
|
| 66 |
+
|
| 67 |
+
`duration`: duration of the segments, in seconds (float, e.g. "5.946")
|
| 68 |
+
|
| 69 |
+
`speaker`: id of the speaker (text, e.g. "000")
|
| 70 |
+
|
| 71 |
+
`src_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
|
| 72 |
+
|
| 73 |
+
`src_text`: recognized text (text, e.g. "Grazie a tutti.")
|
| 74 |
+
|
| 75 |
+
`tgt_lang`: id of the source language (ISO 639-1 code, e.g. "it", "en")
|
| 76 |
+
|
| 77 |
+
`tgt_text`: translated text (text, e.g. "Thank you all.")
|
| 78 |
+
|
| 79 |
+
`ASR`: True/False - indicates whether the sample has been used for ASR training
|
| 80 |
+
|
| 81 |
+
`ST`: True/False - indicates whether the sample has been used for ST training
|
| 82 |
+
|
| 83 |
+
## Dataset Statistics
|
| 84 |
+
|
| 85 |
+
The full list of FAMA training datasets, together with the number of hours for each language/language pair and
|
| 86 |
+
the type of labels (A for automatic and G for gold labels) is reported below for both ASR and ST tasks.
|
| 87 |
+
|
| 88 |
+
### Automatic Speech Recognition (ASR)
|
| 89 |
+
| Dataset | English (h) | Italian (h) | Label |
|
| 90 |
+
|--------|--------|--------|-------|
|
| 91 |
+
| CommonVoice v18 | 1,746 | 250 | G |
|
| 92 |
+
| CoVoST2 | 420 | 28 | G |
|
| 93 |
+
| FLEURS | 7 | 9 | G |
|
| 94 |
+
| LibriSpeech | 358 | - | G |
|
| 95 |
+
| MOSEL | 66,301 | 21,775 | A |
|
| 96 |
+
| MLS | 44,600 | 247 | G |
|
| 97 |
+
| VoxPopuli-ASR | 519 | 74 | G |
|
| 98 |
+
| YouTube-Commons | 14,200 | 1,828 | A |
|
| 99 |
+
| **TOTAL** | 128,152 | 24,211 | G+A |
|
| 100 |
+
|
| 101 |
+
### Speech Translation (ST)
|
| 102 |
+
| Dataset | English (h) | Italian (h) | Label |
|
| 103 |
+
|--------|--------|--------|-------|
|
| 104 |
+
| CommonVoice v18 | 1,746 | 250 | A |
|
| 105 |
+
| CoVoST2 | 420 | 28 | A |
|
| 106 |
+
| LibriSpeech | 358 | - | A |
|
| 107 |
+
| MOSEL | 66,301 | 21,775 | A |
|
| 108 |
+
| MLS | 44,600 | 247 | A |
|
| 109 |
+
| VoxPopuli-ASR | 519 | 74 | A |
|
| 110 |
+
| YouTube-Commons | 14,200 | 1,828 | A |
|
| 111 |
+
| *TOTAL (A)* | 128,144 | 24,202 | A |
|
| 112 |
+
| *FILTERED (A)* | 123,777 | 23,445 | A |
|
| 113 |
+
| CoVoST2 | 420 | 28 | G |
|
| 114 |
+
| FLEURS | 7 | 9 | G |
|
| 115 |
+
| **TOTAL** | 124,204 | 23,482 | G+A |
|
| 116 |
+
|
| 117 |
+
## Dataset Creation
|
| 118 |
+
To reproduce the MOSEL-derived datasets (all but YouTube-Commons), please refer to the
|
| 119 |
+
[MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository and to the
|
| 120 |
+
[MOSEL data card on HuggingFace](https://huggingface.co/datasets/FBK-MT/mosel).
|
| 121 |
+
|
| 122 |
+
To download and process YouTube-Commons, please refer to the
|
| 123 |
+
[dedicated YouTube-Commons README](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/YouTube-Commons-README.md).
|
| 124 |
+
|
| 125 |
+
The code used to produce all translations with [MADALAD-400 3B-MT](https://huggingface.co/google/madlad400-3b-mt) is the following:
|
| 126 |
+
```
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
The script used for filtering the ST datasets is
|
| 130 |
+
[`filter_tsv_based_on_ratio`](https://huggingface.co/datasets/FBK-MT/fama-data/blob/main/scripts/filter_tsv_based_on_ratio.py) and
|
| 131 |
+
available in the `scripts` folder of this repository.
|
| 132 |
+
For English speech datasets, we set `--threshold-min 0.75` and `--threshold-max 1.45`
|
| 133 |
+
while, for the Italian speech datasets, `--threshold-min 0.65` and `--threshold-max 1.35`.
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
## Citation
|
| 137 |
+
```
|
| 138 |
+
@misc{papi2025fama,
|
| 139 |
+
title={FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian},
|
| 140 |
+
author={Sara Papi and Marco Gaido and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabih and Matteo Negri},
|
| 141 |
+
year={2025}
|
| 142 |
+
}
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
## Dataset Card Contact
|
| 146 |
+
[@spapi](https://huggingface.co/spapi)
|