|
|
import json |
|
|
import os |
|
|
from tqdm import tqdm |
|
|
|
|
|
from datasets import Dataset, load_dataset, Image |
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
def load_jsonl(file_path): |
|
|
""" |
|
|
Loads a JSONL file and returns a list of Python dictionaries. |
|
|
Each dictionary represents a JSON object from a line in the file. |
|
|
""" |
|
|
data = [] |
|
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
|
for line in f: |
|
|
try: |
|
|
|
|
|
json_object = json.loads(line.strip()) |
|
|
data.append(json_object) |
|
|
except json.JSONDecodeError as e: |
|
|
print(f"Error decoding JSON on line: {line.strip()} - {e}") |
|
|
return data |
|
|
|
|
|
|
|
|
def main(): |
|
|
dsets = ["train", "val", "test"] |
|
|
workdir = "./flickr30k" |
|
|
|
|
|
|
|
|
annot_fn = os.path.join(workdir, "results.csv") |
|
|
df = pd.read_csv(annot_fn, delimiter="|") |
|
|
df = pd.DataFrame(df) |
|
|
|
|
|
datadict = {} |
|
|
for _, row in df.iterrows(): |
|
|
idx = row["image_name"].replace(".jpg", "") |
|
|
if idx not in datadict: |
|
|
datadict[idx] = { |
|
|
"image_name": row["image_name"], |
|
|
"image": os.path.join(workdir, "flickr30k_images", row["image_name"]), |
|
|
"sentids": [], |
|
|
"split": None, |
|
|
"caption": [], |
|
|
"narratives": [] |
|
|
} |
|
|
|
|
|
datadict[idx]["sentids"].append(row[" comment_number"]) |
|
|
datadict[idx]["caption"].append(row[" comment"]) |
|
|
|
|
|
|
|
|
for split in dsets: |
|
|
narr = load_jsonl(os.path.join(workdir, "narratives", f"flickr30k_{split}_captions.jsonl")) |
|
|
for item in narr: |
|
|
idx = item["image_id"] |
|
|
datadict[idx]["split"] = split |
|
|
datadict[idx]["narratives"].append(item["caption"]) |
|
|
|
|
|
|
|
|
for split in dsets: |
|
|
df = pd.DataFrame.from_dict(datadict, orient="index") |
|
|
df = df[df["split"] == split] |
|
|
ds = Dataset.from_pandas(df) |
|
|
ds = ds.remove_columns(["__index_level_0__", "split"]) |
|
|
ds = ds.cast_column("image", Image()) |
|
|
ds.save_to_disk(os.path.join(workdir, "datasets", "data", split), max_shard_size="400MB") |
|
|
|
|
|
return |
|
|
|
|
|
|
|
|
def test_dataset(): |
|
|
ds = load_dataset("./flickr30k/datasets") |
|
|
print(ds["train"][0]) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
test_dataset() |
|
|
|