import json import os from tqdm import tqdm from datasets import Dataset, load_dataset, Image import pandas as pd def load_jsonl(file_path): """ Loads a JSONL file and returns a list of Python dictionaries. Each dictionary represents a JSON object from a line in the file. """ data = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: try: # Parse each line as a JSON object json_object = json.loads(line.strip()) data.append(json_object) except json.JSONDecodeError as e: print(f"Error decoding JSON on line: {line.strip()} - {e}") return data def main(): dsets = ["train", "val", "test"] # test val workdir = "./flickr30k" # Load annotations annot_fn = os.path.join(workdir, "results.csv") df = pd.read_csv(annot_fn, delimiter="|") df = pd.DataFrame(df) datadict = {} for _, row in df.iterrows(): idx = row["image_name"].replace(".jpg", "") if idx not in datadict: datadict[idx] = { "image_name": row["image_name"], "image": os.path.join(workdir, "flickr30k_images", row["image_name"]), "sentids": [], "split": None, "caption": [], "narratives": [] } datadict[idx]["sentids"].append(row[" comment_number"]) datadict[idx]["caption"].append(row[" comment"]) # Align to narratives splits. for split in dsets: narr = load_jsonl(os.path.join(workdir, "narratives", f"flickr30k_{split}_captions.jsonl")) for item in narr: idx = item["image_id"] datadict[idx]["split"] = split datadict[idx]["narratives"].append(item["caption"]) # make datasets for split in dsets: df = pd.DataFrame.from_dict(datadict, orient="index") df = df[df["split"] == split] ds = Dataset.from_pandas(df) ds = ds.remove_columns(["__index_level_0__", "split"]) ds = ds.cast_column("image", Image()) ds.save_to_disk(os.path.join(workdir, "datasets", "data", split), max_shard_size="400MB") return def test_dataset(): ds = load_dataset("./flickr30k/datasets") # , split="val" print(ds["train"][0]) if __name__ == "__main__": # main() test_dataset()