Datasets:

Modalities:
Text
Video
Formats:
text
ArXiv:
Libraries:
Datasets
License:
Jianxiong nielsr HF Staff commited on
Commit
c67c8fc
·
verified ·
1 Parent(s): 7db5448

Update dataset card for MinD-3D++ paper and add task category (#2)

Browse files

- Update dataset card for MinD-3D++ paper and add task category (989739bc8bc2526b3dc36b2aab59c086b356d4c1)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +29 -7
README.md CHANGED
@@ -1,14 +1,25 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
3
  ---
4
 
5
- # [ECCV 2024] MinD-3D: Reconstruct High-quality 3D objects in Human Brain
6
 
7
- [![ArXiv](https://img.shields.io/badge/ArXiv-2312.07485-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2312.07485)
8
- [![Github](https://img.shields.io/badge/Github-MinD_3D-blue.svg?logo=Github)](https://github.com/JianxGao/MinD-3D)
 
 
 
 
9
 
10
  ## Overview
11
- MinD-3D aims to reconstruct high-quality 3D objects based on fMRI data.
12
 
13
  ## Repository Structure
14
  - **annotations**: Contains metadata and annotations related to the fMRI data for each subject.
@@ -20,12 +31,11 @@ MinD-3D aims to reconstruct high-quality 3D objects based on fMRI data.
20
  - **raw_data**: Raw fMRI data collected directly from the imaging machine.
21
  - **npy_data**: Processed data. We utilized fMRIPrep and the methodologies described in our paper to derive and store the data in NumPy format (.npy).
22
 
23
-
24
  ## Citation
25
 
26
- If you find our paper useful for your research and applications, please cite using this BibTeX:
27
 
28
- ```
29
  @misc{gao2023mind3d,
30
  title={MinD-3D: Reconstruct High-quality 3D objects in Human Brain},
31
  author={Jianxiong Gao and Yuqian Fu and Yun Wang and Xuelin Qian and Jianfeng Feng and Yanwei Fu},
@@ -34,4 +44,16 @@ If you find our paper useful for your research and applications, please cite usi
34
  archivePrefix={arXiv},
35
  primaryClass={cs.CV}
36
  }
 
 
 
 
 
 
 
 
 
 
 
 
37
  ```
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - image-to-3d
5
+ tags:
6
+ - fmri
7
+ - 3d-reconstruction
8
+ - neuroscience
9
+ - brain-decoding
10
  ---
11
 
12
+ # fMRI-Shape Dataset: A Component of the fMRI-3D Dataset for MinD-3D++
13
 
14
+ This repository contains the `fMRI-Shape` dataset, a component of the comprehensive fMRI-3D dataset introduced and utilized in the paper [MinD-3D++: Advancing fMRI-Based 3D Reconstruction with High-Quality Textured Mesh Generation and a Comprehensive Dataset](https://huggingface.co/papers/2409.11315). This work builds upon the initial "MinD-3D" research.
15
+
16
+ The fMRI-3D dataset consists of two components: `fMRI-Shape` (this dataset) and [fMRI-Objaverse](https://huggingface.co/datasets/Fudan-fMRI/fMRI-Objaverse). Both datasets are designed to advance 3D visual reconstruction from fMRI data.
17
+
18
+ **Project Page:** https://jianxgao.github.io/MinD-3D
19
+ **Code (GitHub):** https://github.com/JianxGao/MinD-3D
20
 
21
  ## Overview
22
+ MinD-3D (and MinD-3D++) aims to reconstruct high-quality 3D objects based on fMRI data. This `fMRI-Shape` dataset contains fMRI recordings and corresponding 3D object stimuli used in this research.
23
 
24
  ## Repository Structure
25
  - **annotations**: Contains metadata and annotations related to the fMRI data for each subject.
 
31
  - **raw_data**: Raw fMRI data collected directly from the imaging machine.
32
  - **npy_data**: Processed data. We utilized fMRIPrep and the methodologies described in our paper to derive and store the data in NumPy format (.npy).
33
 
 
34
  ## Citation
35
 
36
+ If you find our work and datasets useful for your research and applications, please cite the respective papers:
37
 
38
+ ```bibtex
39
  @misc{gao2023mind3d,
40
  title={MinD-3D: Reconstruct High-quality 3D objects in Human Brain},
41
  author={Jianxiong Gao and Yuqian Fu and Yun Wang and Xuelin Qian and Jianfeng Feng and Yanwei Fu},
 
44
  archivePrefix={arXiv},
45
  primaryClass={cs.CV}
46
  }
47
+ ```
48
+
49
+ ```bibtex
50
+ @misc{gao2025mind3dadvancingfmribased3d,
51
+ title={MinD-3D++: Advancing fMRI-Based 3D Reconstruction with High-Quality Textured Mesh Generation and a Comprehensive Dataset},
52
+ author={Jianxiong Gao and Yanwei Fu and Yuqian Fu and Yun Wang and Xuelin Qian and Jianfeng Feng},
53
+ year={2025},
54
+ eprint={2409.11315},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.CV},
57
+ url={https://arxiv.org/abs/2409.11315},
58
+ }
59
  ```